An Unified Understanding of Voice Conversion and its Medical Application

Wen-Chin Huang Nagoya University, Japan

Who am I?

A PhD student in Japan who spent most of his graduate school life in Taiwan.

A 10 years street dancer.

A trilingual speaker. (Mandarin, English, Japanese)

A two-time Meta intern.

An unified understanding of voice conversion techniques

Just a personal opinion!

- Definition and goal
- Sidestory:An observation in top conf papers
- My understanding of VC techniques

Voice conversion (VC)

<u>Definition</u>: converts one kind of speech to another while keeping the linguistic content.

Doesn't have to be speaker conversion! **Applications**:

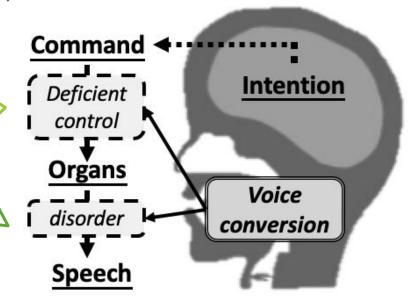
- Speaker conversion (Detective Conan, deepfake, etc.)
- Accent conversion (international customer service)
- Electrolarygeal conversion (speech organ disability)
- ...and more

Sanas aims to convert one accent to another in real time for smoother customer service calls

Devin Coldewey @techcrunch / 7:23 PM EDT • August 31, 2021

Ultimate goal of voice conversion: augmented communication

Physical condition of the human body often limits the production of speech.


Ex 1. Deficient control of the organs

→ accented voice

Solution: Convert into native speech

Ex 2. Damaged speech organs

→ severe vocal disorders Solution: Speaking aid devices to restore natural voice.

Side story... you might have heard these papers:

```
Autovc: Zero-shot voice style transfer with only autoencoder loss
Multi-target voice conversion without parallel data by adversarially learning
   Cyclegan-vc: Non-parallel voice conversion using cycle-consistent adversarial
   networks
   T Kaneko, H Kameoka - 2018 26th European Signal ..., 2018 - ieeexplore.ieee.org
   ... VC method [10] even though CycleGAN-VC is trained under disadvantageous conditions
   (non... In Section III, we review the CycleGAN and explain our proposed method (CycleGAN-VC). ...
            99 引用 被引用 183 次 相關文章 全部共 5 個版本
  This kind of factorization enable our model to perform one-shot voice conversion as follows:
with one utterance from source speaker and another utterance from target speaker, we first ...
                  被引用 119 次
                                相關文章
   StarGAN-VC does not require any ... Although the concept is similar to our StarGAN-VC approach, ...
            见 引用 被引用 284 次 相關文章 全部共 5 個版本
```

Speech-related papers getting accepted to top confs! But...

IMPROVING ZERO-SHOT VOICE STYLE TRANSFER VIA DISENTANGLED REPRESENTATION LEARNING

Published as a conference paper at ICLR 2021

https://arxiv.org/pdf/2103.09420.pdf

5.3 STYLE TRANSFER PERFORMANCE

We test our model with four competitive baselines: Blow (Serrà et al., 2019)³, AUTOVC (Qian et al., 2019), AdaIN-VC (Chou & Lee, 2019) and StarGAN-VC (Kameoka et al., 2018). The de-

Metric	Objective		Subjective	
	Distance	Verification[%]	Naturalness [1–5]	Similarity [%]
StarGAN	6.73	71.1	2.77	51.5
AdaIN-VC	6.98	85.5	2.19	50.8
AUTOVC	6.73	89.9	3.25	55.0
Blow	8.08	-	2.11	10.8
IDE-VC (Ours)	6.70	92.2	3.26	68.5

Representation learning is hot! But...

Neural Analysis and Synthesis: Reconstructing Speech from Self-Supervised Representations

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia. https://arxiv.org/pdf/2110.14513.pdf

total. We trained three baseline models with official implementations - VQVC+ [51], AdaIN [10], AUTOVC [36] - using the same dataset and mel spectrogram configuration as NANSY. For a fair

		M2M			A2M			A2A	
	CER[%]	MOS[1-5]	SSIM[%]	CER[%]	MOS[1-5]	SSIM[%]	CER[%]	MOS[1-5]	SSIM[%]
SRC as TGT TGT as TGT	1000 500	$\begin{array}{c} 4.23 \pm 0.05 \\ 4.32 \pm 0.05 \end{array}$	0 94.9	n/a n/a	$\begin{array}{c} 4.28 \pm 0.09 \\ 4.29 \pm 0.05 \end{array}$	0.60 92.4	n/a n/a	$\begin{array}{c} 4.26 \pm 0.07 \\ 4.27 \pm 0.07 \end{array}$	0.25 96.2
VQVC+ AdaIN AUTOVC NANSY	54.0 62.9 31.7 7.5	$\begin{array}{c} 1.76 \pm 0.05 \\ 2.22 \pm 0.07 \\ 3.41 \pm 0.06 \\ \textbf{3.79} \pm 0.07 \end{array}$	24.0 47.3	74.7 79.6 36.1 7.6	$\begin{array}{c} 1.73 \pm 0.11 \\ 1.92 \pm 0.12 \\ 2.74 \pm 0.11 \\ \textbf{3.73} \pm 0.05 \end{array}$	15.6 18.1 33.2 88.1	69.3 59.3 28.2 8.6	$\begin{array}{c} 1.83 \pm 0.09 \\ 2.12 \pm 0.10 \\ 2.59 \pm 0.08 \\ \textbf{3.44} \pm 0.07 \end{array}$	13.8 21.2 23.3 64.6

Here's a recent one...

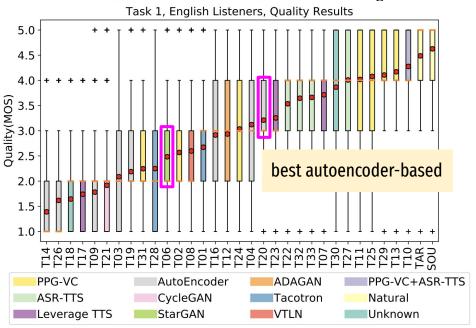
DIFFUSION-BASED VOICE CONVERSION WITH FAST MAXIMUM LIKELIHOOD SAMPLING SCHEME

ICLR 2022. https://arxiv.org/pdf/ 2109.13821.pdf

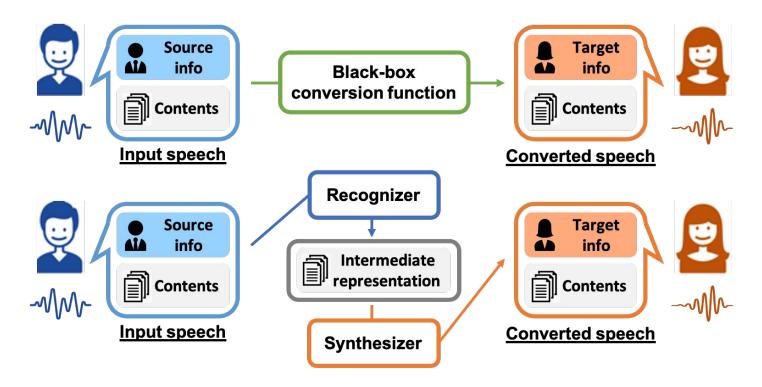
4.2 ANY-TO-ANY VOICE CONVERSION

We chose four recently proposed VC models capable of one-shot many-to-many synthesis as the baselines:

- AGAIN-VC (Chen et al., 2021b), an improved version of a conventional autoencoder AdaIN-VC solving the disentanglement problem by means of instance normalization;
- FragmentVC (Lin et al., 2021), an attention-based model relying on wav2vec 2.0 (Baevski et al., 2020) to obtain speech content from the source utterance;
- *VQMIVC* (Wang et al., 2021), state-of-the-art approach among those employing vector quantization techniques;


	VCTK test (9 spe	eakers, 54 pairs)	Whole test (25 speakers, 350 pairs)		
	Naturalness	Similarity	Naturalness	Similarity	
AGAIN-VC	1.98 ± 0.05	1.97 ± 0.08	1.87 ± 0.03	1.75 ± 0.04	
FragmentVC	2.20 ± 0.06	2.45 ± 0.09	1.91 ± 0.03	1.93 ± 0.04	
VQMIVC	2.89 ± 0.06	2.60 ± 0.10	2.48 ± 0.04	1.95 ± 0.04	
Diff-VCTK-ML-6	$\boldsymbol{3.73 \pm 0.06}$	3.47 ± 0.09	3.39 ± 0.04	2.69 ± 0.05	
Diff-VCTK-ML-30	$\boldsymbol{3.73 \pm 0.06}$	$\boldsymbol{3.57 \pm 0.09}$	$\textbf{3.44} \pm \textbf{0.04}$	2.71 ± 0.05	
Ground truth	4.55 ± 0.05	4.52 ± 0.07	4.55 ± 0.05	4.52 ± 0.07	

The truth is...


Voice Conversion Challenge 2020

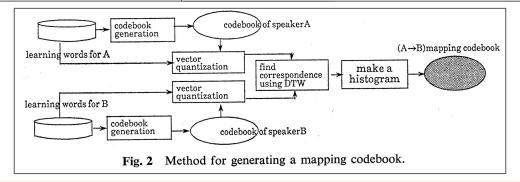
- Intra-lingual semi-parallel and cross-lingual voice conversion -

Zhao Yi^{1*}, Wen-Chin Huang^{2*}, Xiaohai Tian^{3*}, Junichi Yamagishi^{1*}, Rohan Kumar Das³, Tomi Kinnunen⁴, Zhenhua Ling⁵, Tomoki Toda²

To me, there are only two approaches to voice conversion...

Black-box function: how people did voice conversion 30 years ago

Voice conversion through vector quantization

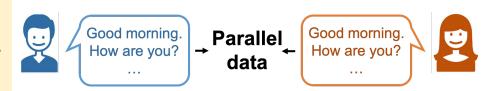

M Abe, <u>S Nakamura</u>, <u>K Shikano</u>... - Journal of the Acoustical ..., 1990 ... VOICE CONVERSION THROUGH VECTOR QUANTIZATION Our consists of two steps:a learning step and a conversion-synthesis step ☆ 儲存 见引用 被引用 817 次 相關文章 全部共 12 個版本

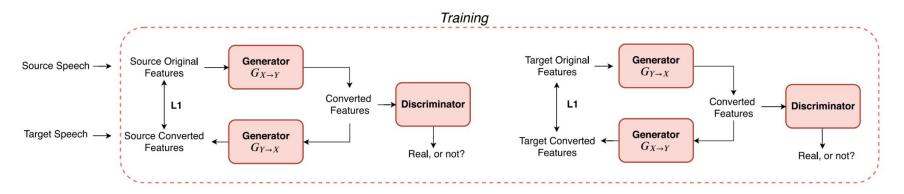
Continuous probabilistic transform for voice conversion

Y Stylianou, O Cappé... - IEEE Transactions on ..., 1998 - ieeexplore.ieee.org

... For the same reason, voice conversion techniques would ... Finally, it is interesting to note that the voice conversion problem ... and voice conversion is that in the case of voice conversion, ...

☆ 儲存 59 引用 被引用 1292 次 相關文章 全部共 14 個版本




Given an input speech segment (a frame, several frames, the whole sentence...), convert without knowing what the content is.

Requires a parallel dataset to learn the mapping (a.k.a. parallel VC)

Only black-box VC without parallel data: Cycle-GAN VC

Parallel VC: requires a training dataset, with same contents from source and target speakers. **Nonparallel VC**: does not require the above.

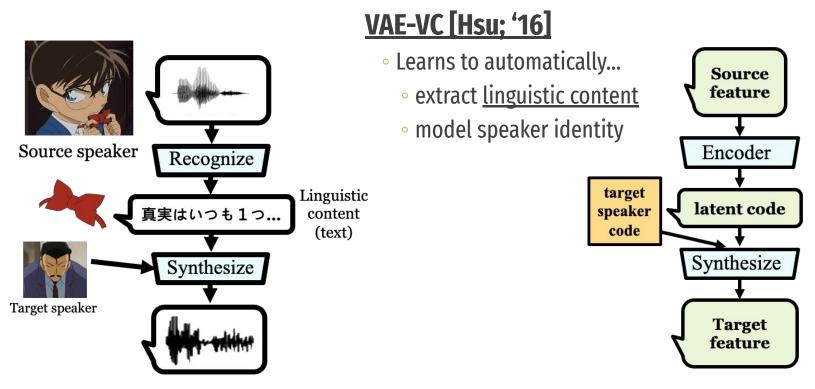
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9262021

What would you do if you were asked to perform VC?

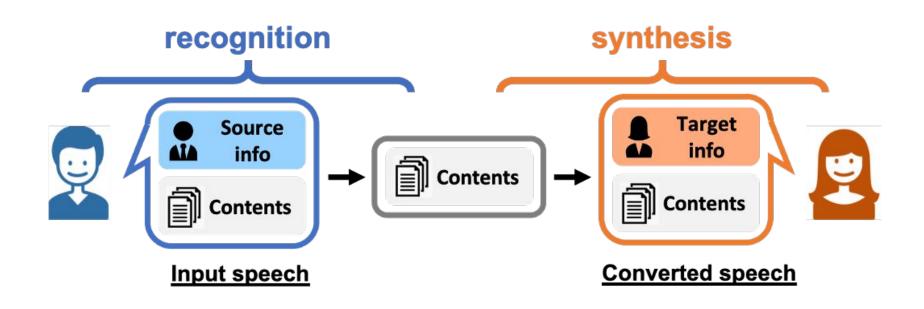
BUSINESS \ TECH \ ARTIFICIAL INTELLIGENCE

This AI startup claims to automate app making but

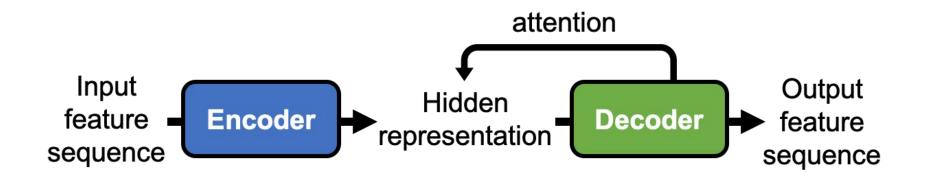
actually just uses humans


Who could have seen that coming?

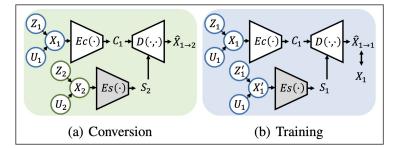
By Nick Statt | @nickstatt | Aug 14, 2019, 1:58pm EDT | 11 comments

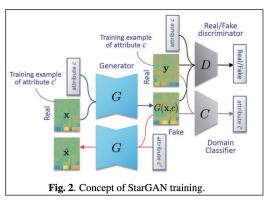

https://www.theverge.com/2019/8/14/20805676/engineer-ai-artificial-intelligencestartup-app-development-outsourcing-humans

Conan's example

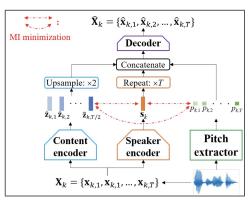


Recognition-synthesis based voice conversion (Rec-syn VC)

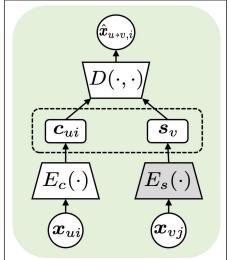



Best model architecture for *parallel VC*: Voice Transformer Network

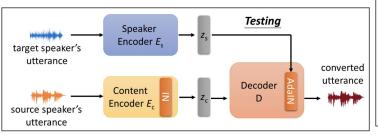
Huang, W., Hayashi, T., Wu, Y., Kameoka, H., Toda, T. (2020) Voice Transformer Network: Sequence-to-Sequence Voice Conversion Using Transformer with Text-to-Speech Pretraining. Proc. Interspeech 2020, 4676-4680

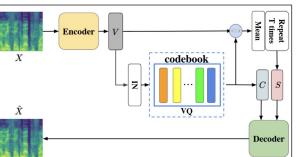


And of course... the **autoencoder** family.



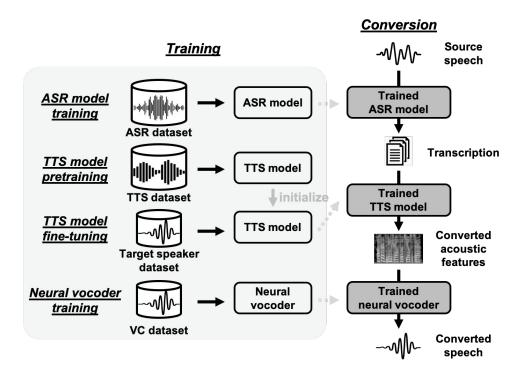
STARGAN-VC

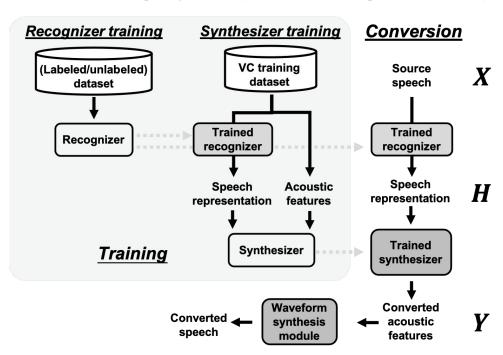



VQMIVC

18

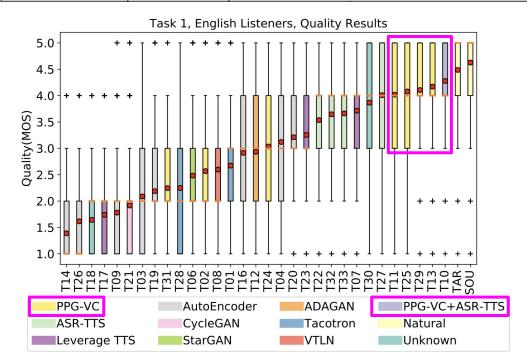
AUTOVC




AdaIN-VC VQVC IDE-VC

How about just concatenating **separately** trained ASR and TTS model?

Huang, W., Hayashi, T., Watanabe, S., Toda, T. (2020) The Sequence-to-Sequence Baseline for the Voice Conversion Challenge 2020: Cascading ASR and TTS. Proc. Joint Workshop for the Blizzard Challenge and Voice Conversion Challenge 2020, 160-164


A more general idea of concatenating separately trained recognition and synthesis models

One can use different intermediate representations.

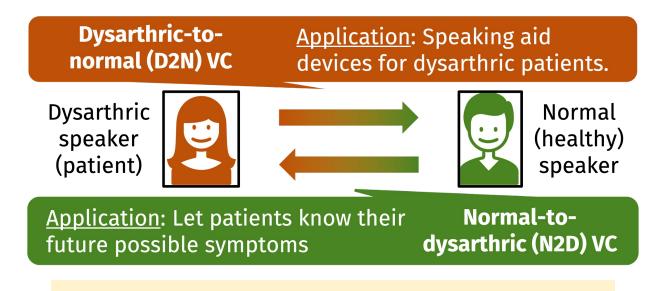
Separately trained rec-syn VC systems are still dominant even up to now.

Representation	Text	Phonetic Posteriorgram	Self-supervised speech representations
Extractor	ASR model		self-supervised model
Training data	labeled data		unlabeled data
Resolution	token level	frame level	

Voice conversion for dysarthric speech

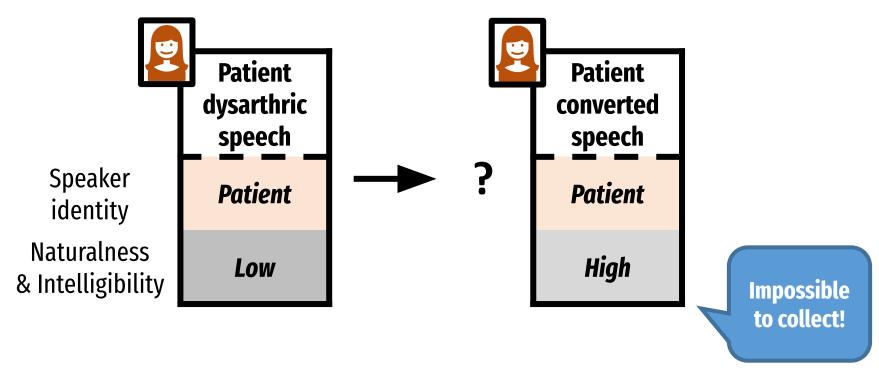
A medical application

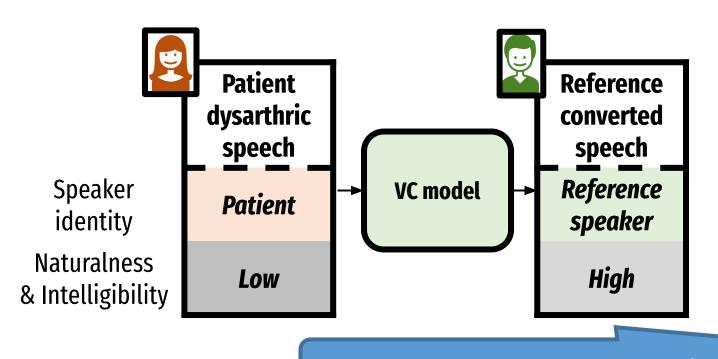
What is dysarthria?


A type of speech disorder caused by disruptions in the **neuromotor** interface

Dysarthric speech: unnatural and unintelligible speech, ex. phoneme loss, unstable prosody, and

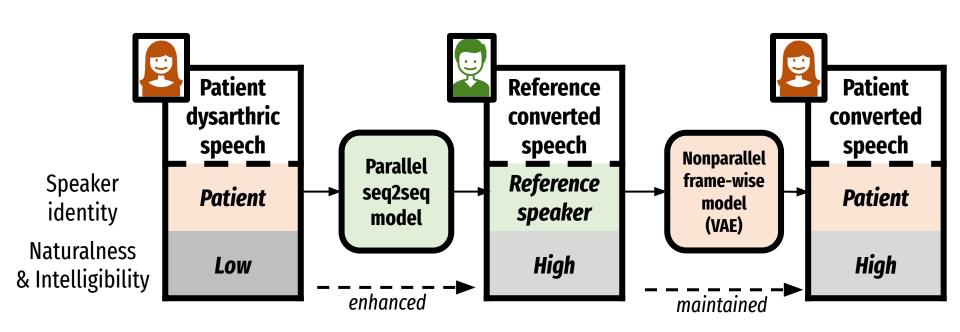
imprecise articulation.


Dysarthric voice conversion: two directions


Goal:

- 1. High quality naturalness & correct intelligibility level
- 2. Maintaining the speaker identity of the source speaker

Problem: naturally lowno-resourced



Past work: record a parallel corpus from a normal reference speaker

We want the converted speech to sound like the patient!


How about... a two-stage approach for maintaining identity?

Generalizable to both directions!

Evaluation

Improve intelligibility (WER: 94% → 75.8%)

Improve naturalness (MOS: $2.37 \rightarrow 2.65$)

Barely maintain patient's identity (49%)

Achieve good naturalness results

Mimic the dysarthric characteristics

Convert away from the reference speaker's identity

Poorly maintain the source speaker's identity

Demo samples

D2N VC: https://unilight.github.io/Publication-Demos/publications/dvc-vtn-vae/index.html

N2D VC: https://unilight.github.io/Publication-Demos/publications/n2d-vc/index.html

Takeaways

Ultimate goal of voice conversion: augmented communication

There are two kinds of voice conversion techniques: black-box, recognition-synthesis

Recognition-synthesis is the mainstream.

Separately training is currently still better than joint training.