

Is Everything End-to-End?

Shinji Watanabe Language Technologies Institute Carnegie Mellon University

Sphinx Speech Lunch, September 1st, 2022

Sphinx Speech Lunch

- This is an official start of the Sphinx Speech Lunch in 2022F!
- Biweekly, Thursday 12:30 1:30pm
 - Then, we can eat a lunch and continue a fun discussion until 2:00pm (or more!)
 - Pizza will be served around the end of the talk
- Please contact Yifan Peng <u>vifanpen@andrew.cmu.edu</u> if you're interested in presenting your work
 - However, we already fixed the speaker line up in the fall semester.. But don't worry! We will also have it in the spring semester (and next year, and forever!)

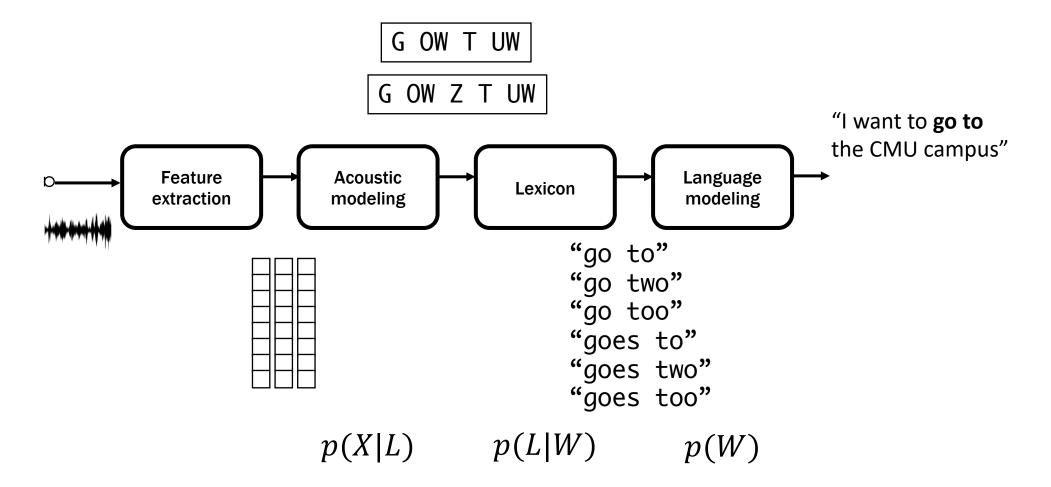
Sphinx Speech Lunch

- Sphinx Speech Lunch is an open space
 - Mix of **both public and private modes** of the talk
 - Like "openreview" or "GitHub Organization"
 - We can freely discuss the ongoing work even it is under the double-blind review if we make this portion as a private mode

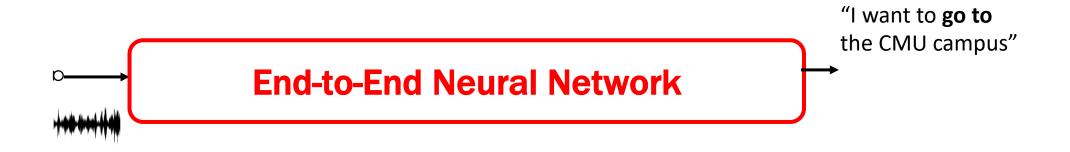
Let's keep Pittsburgh as a hub for speech research!

Today's talk

- End-to-End neural network as an integration tool for various speech processing.
- In addition to introduce our (or others') previous studies, I would try to make a discussion point of this methodology.
- I want to activate some discussions rather than making some conclusions



- Train a deep network that directly maps speech signal to the target letter/word sequence
- Greatly **simplify** the complicated model-building/inference process
- Integrate various modules by optimizing the entire network with a single objective function

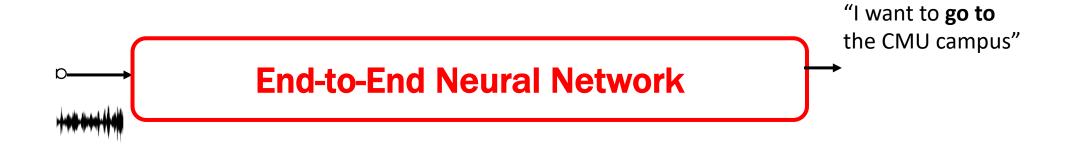


- Train a deep network that directly maps speech signal to the target letter/word sequence
- Greatly **simplify** the complicated model-building/inference process
- Integrate various modules by optimizing the entire network with a single objective function

Note that these characteristics always have pros and cons

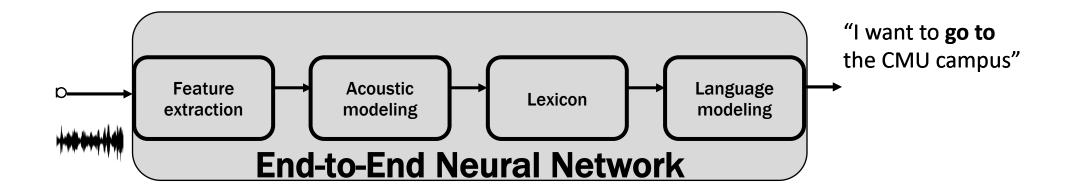
- Train a deep network that directly maps speech signal to the target letter/word sequence → We don't know what's happening. We lose the explainability.
- Greatly **simplify** the complicated model-building/inference process
- Integrate various modules by optimizing the entire network with a single objective function → Difficult to optimize it

Today's topic



Today's topic black box

Today's topic From black box to transparent box



- Maintain modularity
- Toward global optimization with back propagation
- Explainable

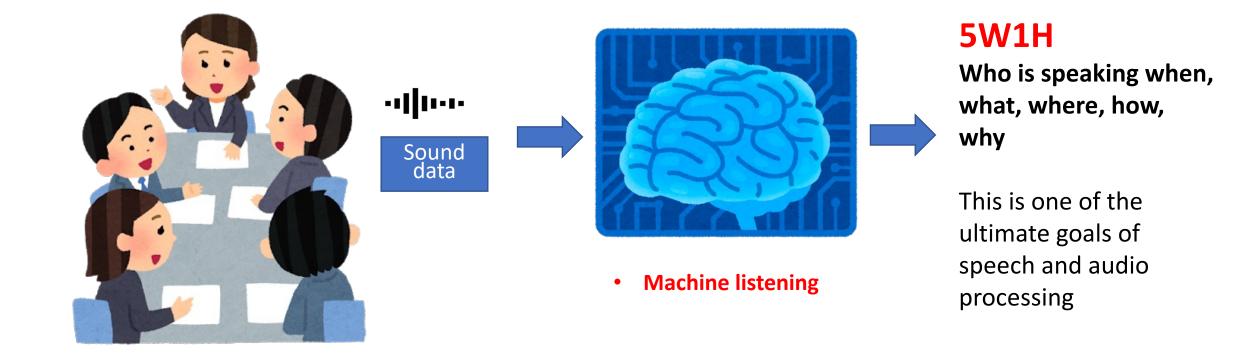
Table of contents

- 1. End-to-End Integration of Speech Recognition and Speech Enhancement
 - X = Speech Recognition
 - 2) X += Denoising, Dereverberation
 - 3) X += Speech Separation
 - 4) X += Speech Localization

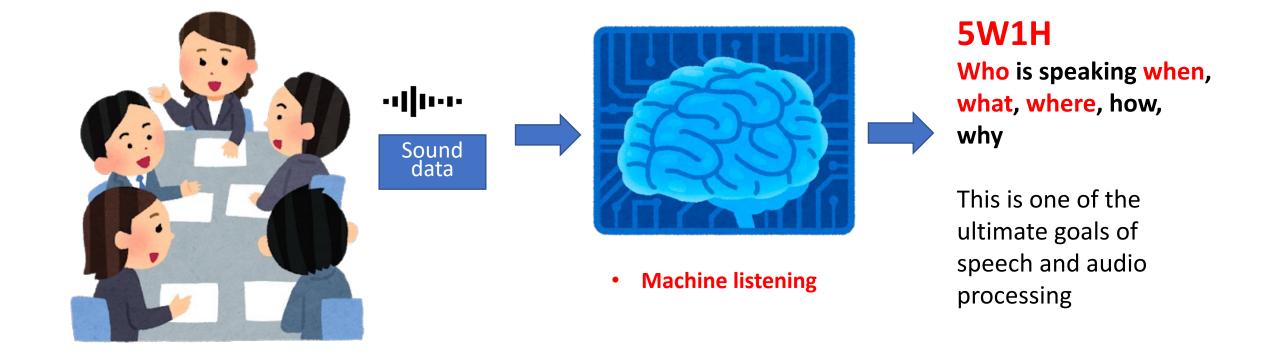
2. End-to-End Integration of Speech Recognition and Speech Synthesis

3. Discussion

To solve machine listening



To solve machine listening



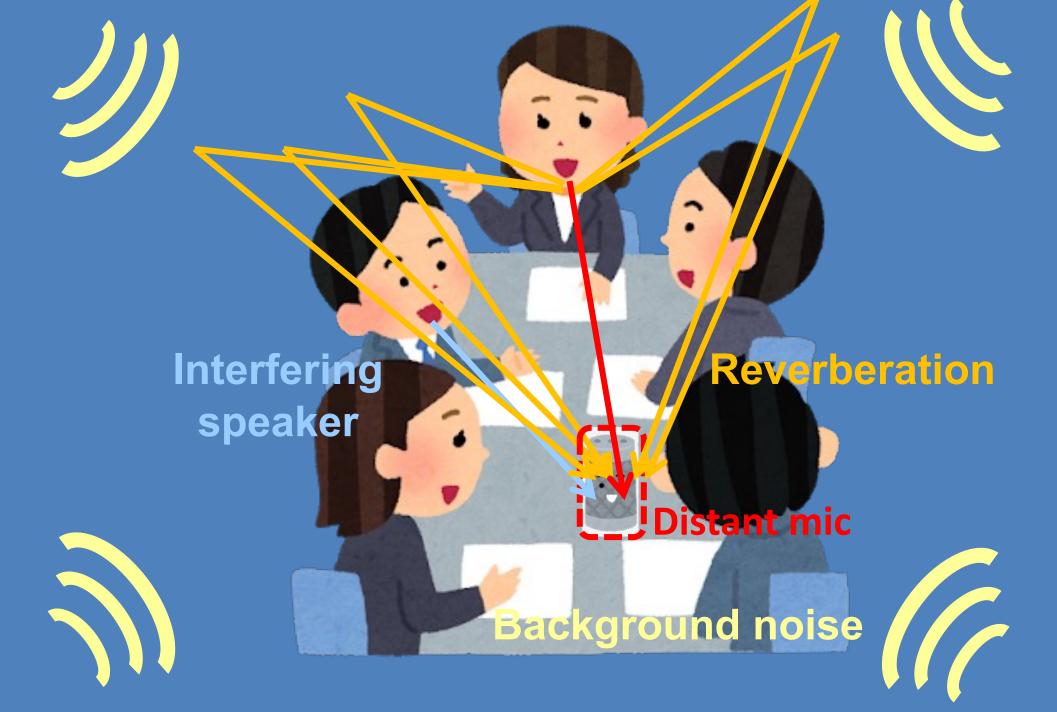
Far-field Speech Processing

Close-talking microphone

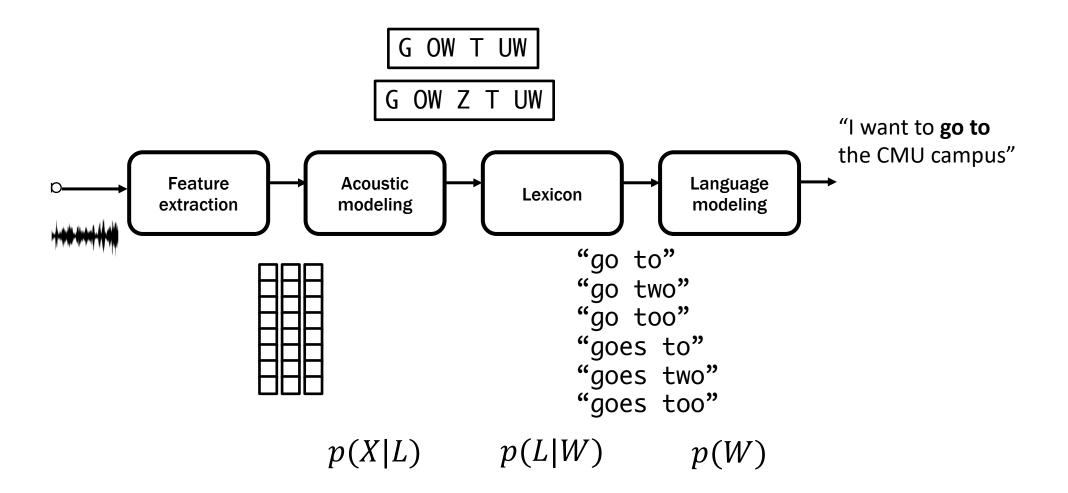
e.g., voice search

Distant microphone

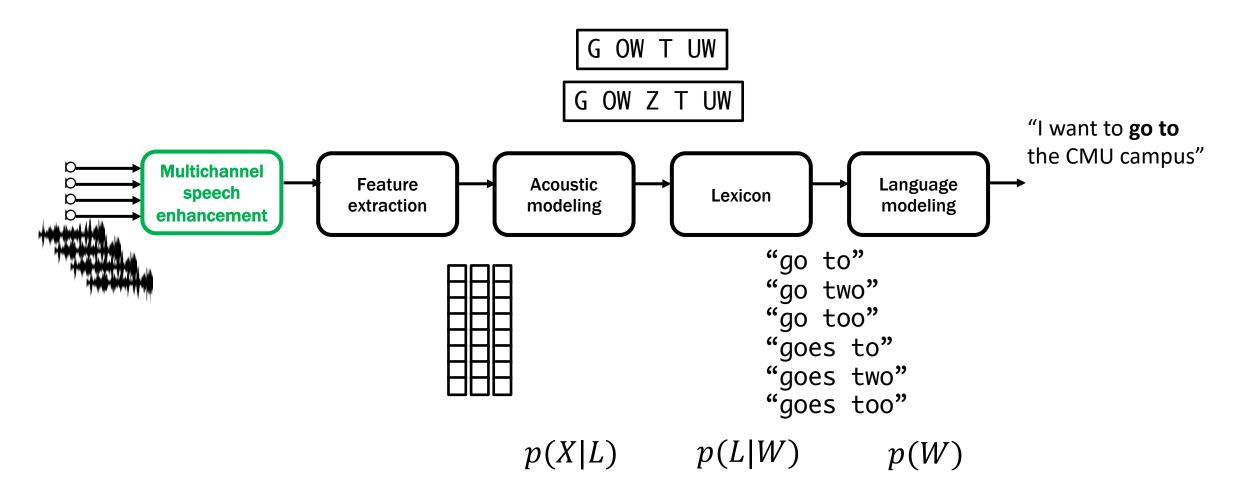
e.g., Human-human comm. (meeting, conversation analysis) Human-robot comm. **Machine listening**



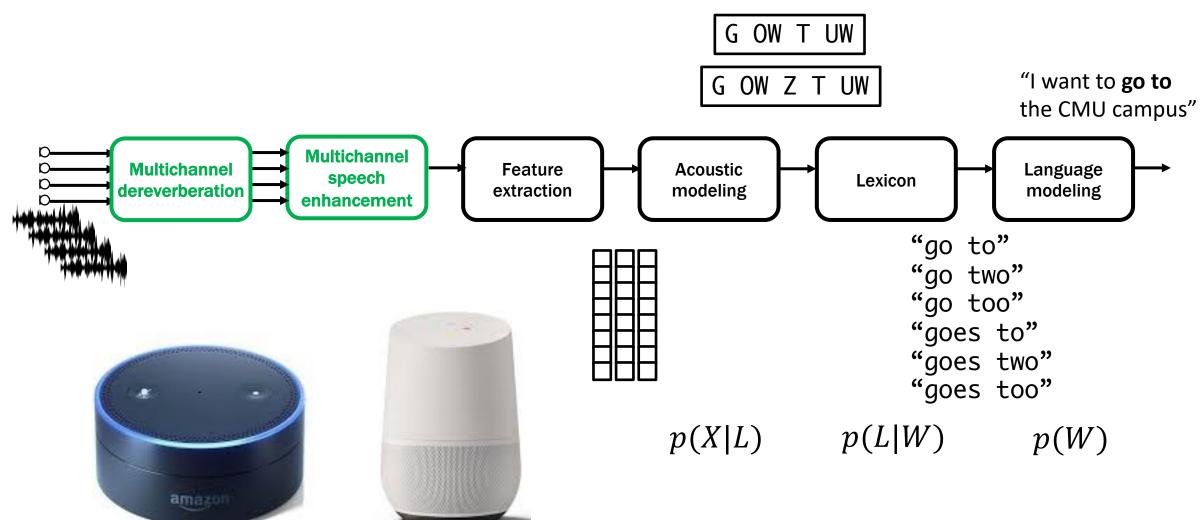
Speech recognition pipeline

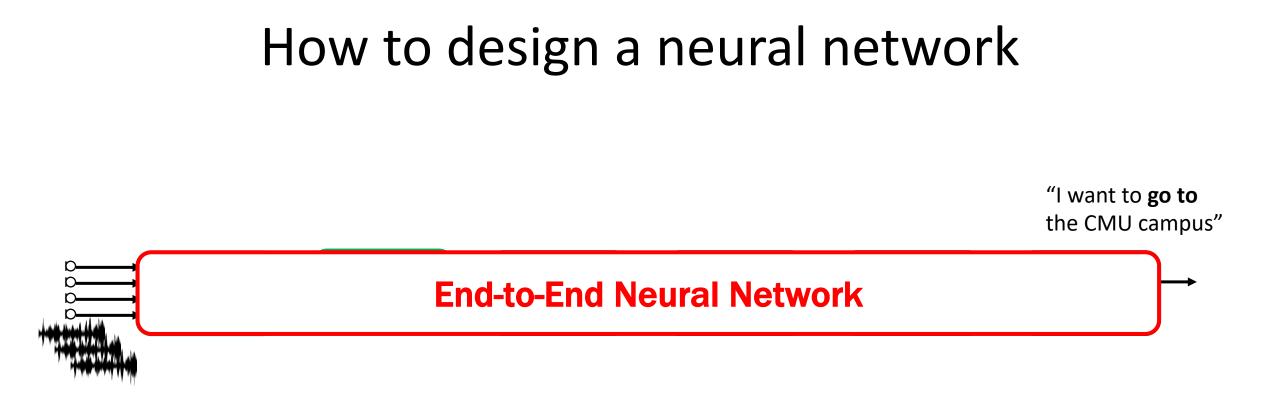


Far-field speech recognition pipeline



Far-field speech recognition pipeline



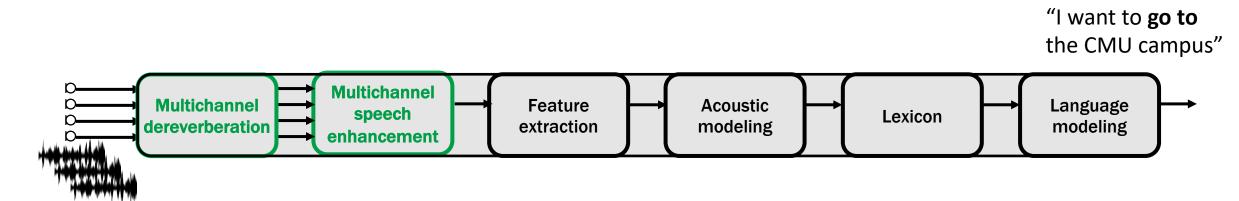


How to design a neural network?

• Black box neural network!?

"I want to go to

How to design a neural network?



Interpretable neural network

- Keep the original modularity
- Carefully design each module to keep computational graphs
- We can provide interpretations for each sub neural network module

Table of contents

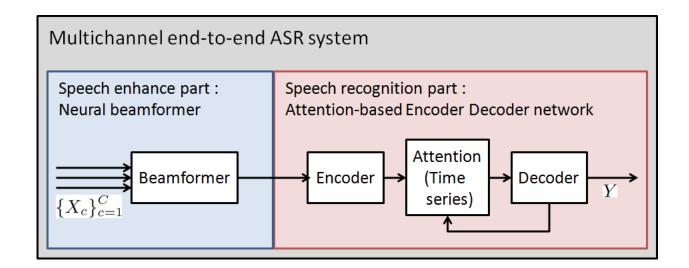
- 1. End-to-End Integration of Speech Recognition and Speech Enhancement
 - X = Speech Recognition
 - 2)X += Denoising, Dereverberation
 - 3) X += Speech Separation
 - 4) X += Speech Localization
- 2. End-to-End Integration of <u>Speech Recognition</u> and <u>Speech</u> <u>Synthesis</u>
- 3. Discussion

Overview of entire architecture [Ochiai et al., 2017, ICML]

Multichannel end-to-end (ME2E) architecture

 integrates entire process of speech enhancement (SE) and speech recognition (SR), by single neural-network-based architecture

$\mathbf{1}$



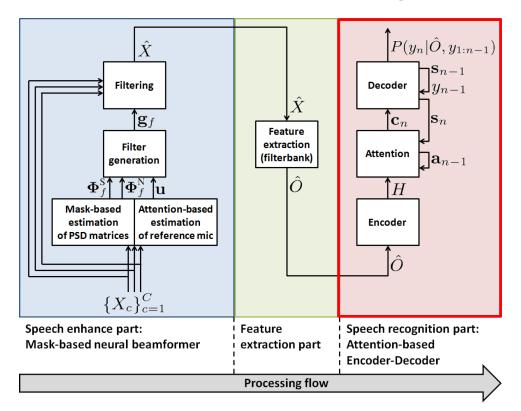
Proposed framework Overview of entire architecture

□ Multichannel end-to-end ASR framework

 integrates entire process of speech enhancement (SE) and speech recognition (SR), by single neural-network-based architecture

 $\mathbf{1}$

SE : Mask-based neural beamformer [Erdogan et al., 2016] SR : Attention-based encoder-decoder network [Chorowski et al., 2014]



Based on a lot of **signal processing oriented** components!

Beamformer subnetwork

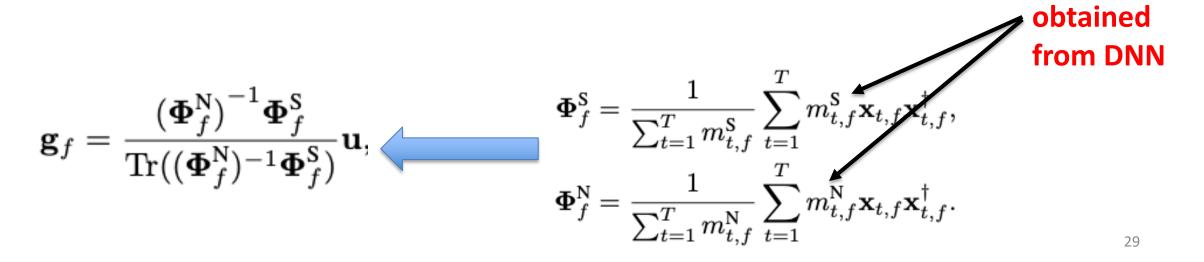
Imitate minimum variance distortionless response (MVDR) beamformer

• Basic equation to obtain enhanced signal $\hat{x}_{t,f}$ at frame t and bin f

$$\hat{x}_{t,f} = \mathbf{g}_f^{\mathsf{H}} \mathbf{x}_{t,f}$$

$$- \mathbf{x}_{t,f} \in \mathbb{C}^{M}$$
: observed *M* multichannel signal
- $\boldsymbol{g}_{f} \in \mathbb{C}^{M}$: beamforming filter coefficients

• Time-invariant beamforming filter with a reference mic **u**

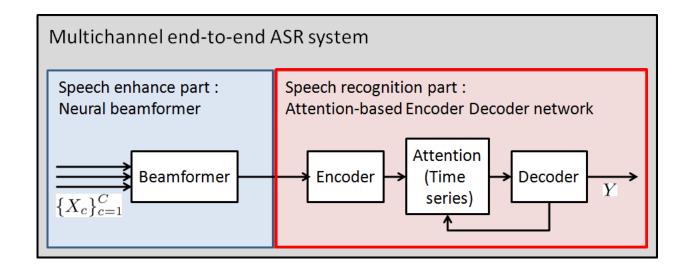


Mask *m* is

Multichannel end-to-end (ME2E) architecture

 integrates entire process of speech enhancement (SE) and speech recognition (SR), by single neural-network-based architecture

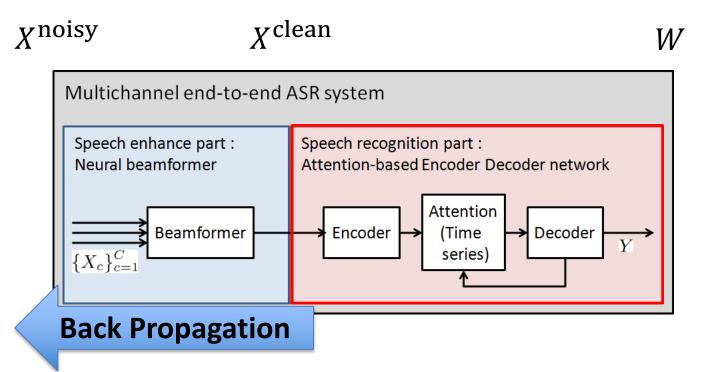
$\mathbf{1}$



Multichannel end-to-end (ME2E) architecture

 integrates entire process of speech enhancement (SE) and speech recognition (SR), by single neural-network-based architecture

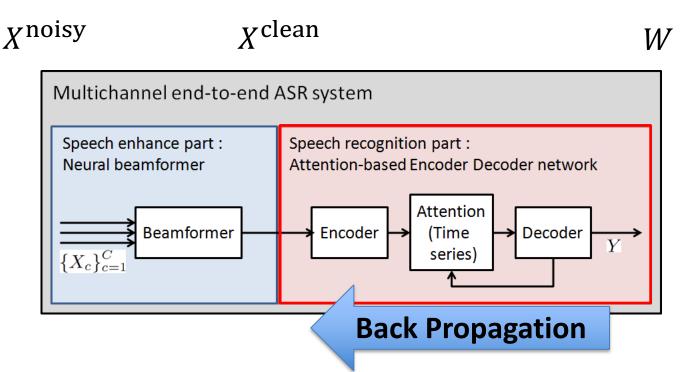
₽

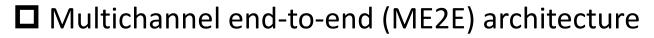


Multichannel end-to-end (ME2E) architecture

 integrates entire process of speech enhancement (SE) and speech recognition (SR), by single neural-network-based architecture

L





Beamformer

 $\{X_c\}_{c=1}^C$

 integrates entire process of speech enhancement (SE) and speech recognition (SR), by single neural-network-based architecture

SE : Mask-based neural beamformer [Erdogan et al., 2016] SR : Attention-based encoder-decoder network [Chorowski et al., 2014] X noisy Multichannel end-to-end ASR system Speech enhance part : Neural beamformer Neural beamformer Neural beamformer

Encoder

Back Propagation

Attention

(Time

series)

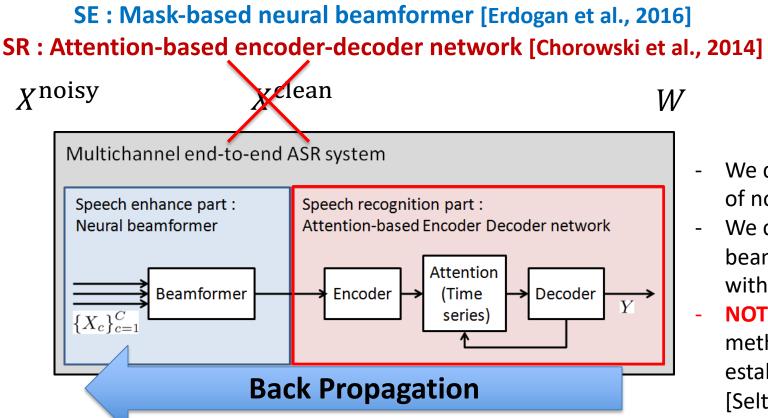
Decoder

Y

- We don't need pair data of noisy and clean data
- We can train both beamforming and ASR with the ASR criterion

Multichannel end-to-end (ME2E) architecture

 integrates entire process of speech enhancement (SE) and speech recognition (SR), by single neural-network-based architecture



- We don't need pair data of noisy and clean data
- We can train both
 beamforming and ASR
 with the ASR criterion
- NOTE: It's not new! This methodology was already established in LIMABEAM [Seltzer et al., 2004]⁴

Further extension

Dereverberation + beamforming + ASR

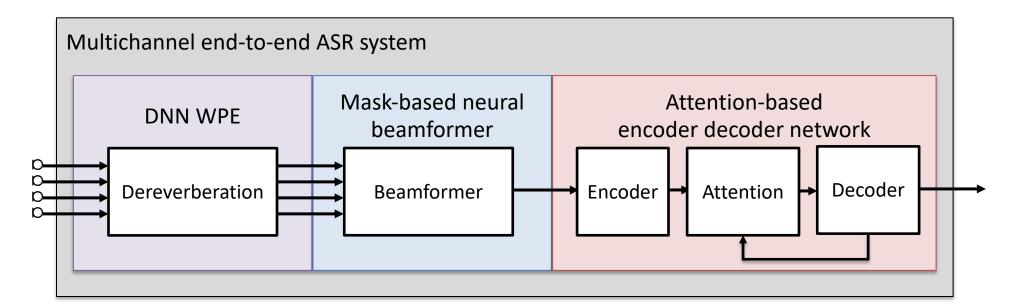
https://github.co m/nttcslabsp/dnn_wpe, [Subramanian'19]

□ Multichannel end-to-end ASR framework

 integrates entire process of speech dereverberation (SD), beamforming (SB) and speech recognition (SR), by single neural-network-based architecture

↓ SD : DNN-based weighted prediction error (DNN-WPE) [Kinoshita et al., 2016] SB : Mask-based neural beamformer [Erdogan et al., 2016]

SR : Attention-based encoder-decoder network [Chorowski et al., 2014]



Further extension

Dereverberation + beamforming + ASR

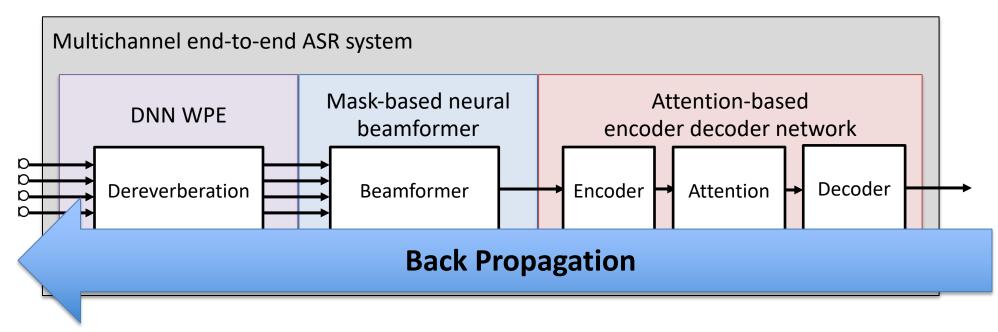
https://github.co m/nttcslabsp/dnn_wpe, [Subramanian'19]

□ Multichannel end-to-end ASR framework

 integrates entire process of speech dereverberation (SD), beamforming (SB) and speech recognition (SR), by single neural-network-based architecture

↓ SD : DNN-based weighted prediction error (DNN-WPE) [Kinoshita et al., 2016] SB : Mask-based neural beamformer [Erdogan et al., 2016]

SR: Attention-based encoder-decoder network [Chorowski et al., 2014]



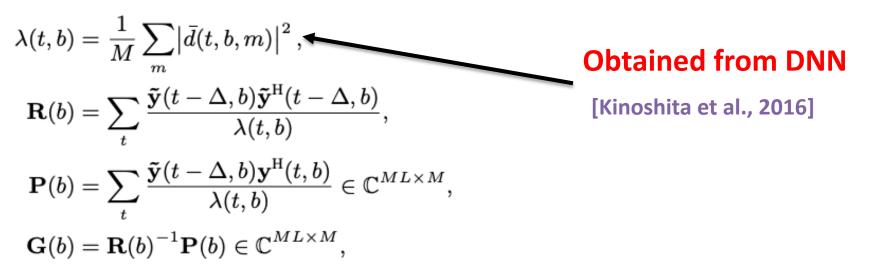
Dereverberation subnetwork

Imitate multichannel linear prediction filtering [Nakatani+(2010)]

Basic equation (Δ delayed linear prediction)

 $\mathbf{d}(t,b) = \mathbf{y}(t,b) - \mathbf{G}^{\mathrm{H}}(b)\mathbf{\tilde{y}}(t-\Delta,b),$

- $\mathbf{y}(t,b) \in \mathbb{C}^{M}$ is the observed multichannel signal (b: frequency bin, M: # channels) - Filter: $\mathbf{G}^{H}(b)$, history of the observation signal: $\tilde{\mathbf{y}}(t - \Delta, b)$
- Update equations (well-known maximum likelihood solutions)



Experimental Results

https://github.co m/nttcslabsp/dnn_wpe, [Subramanian'19]

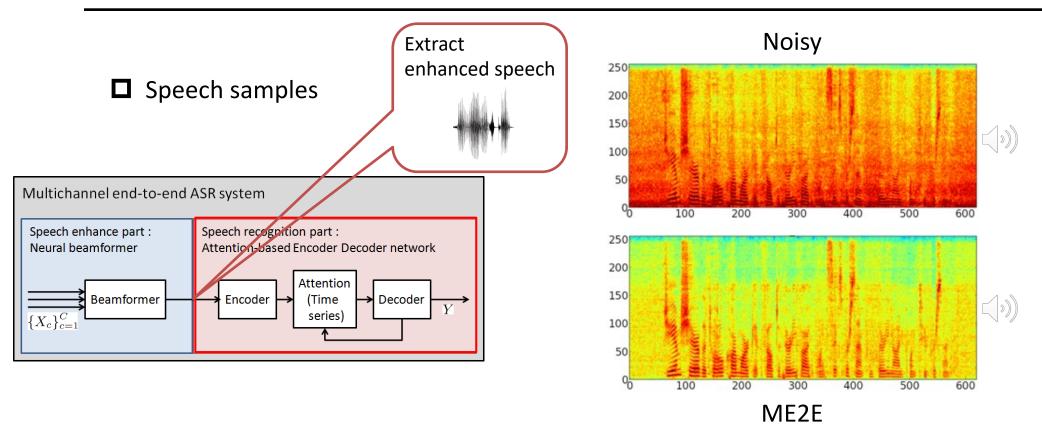
Noisy reverberant speech recognition task (REVERB and DIRHA-WSJ)

- Sigle-channel E2E + dereverberation + beamforming (pipeline)

– Multichannel E2E (integration of speech enhancement and recognition)

model	REVERB Room1 Near	REVERB Room1 Far	DIRHA WSJ Real
E2E baseline (no enhancement)	23.9	26.8	55.3
Single-channel E2E + Dereverberation + Beamforming (pipeline)	11.0	10.8	31.3
Multichannel E2E (end-to- end)	8.7	12.4	29.1

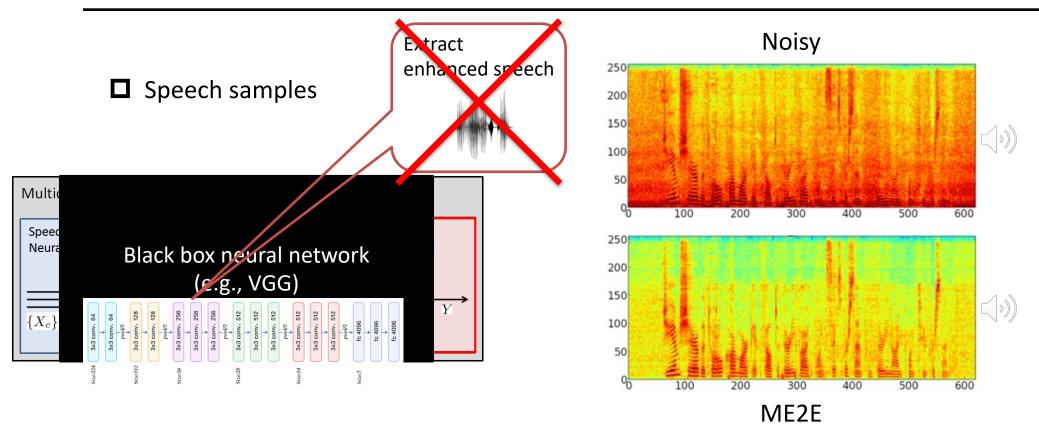
It works as speech enhancement!



Entire network are consistently optimized with ASR-level objective including speech enhancement part

□ Pairs of parallel clean and noisy data are not required for training → SE can be optimized only with noisy signals and their transcripts

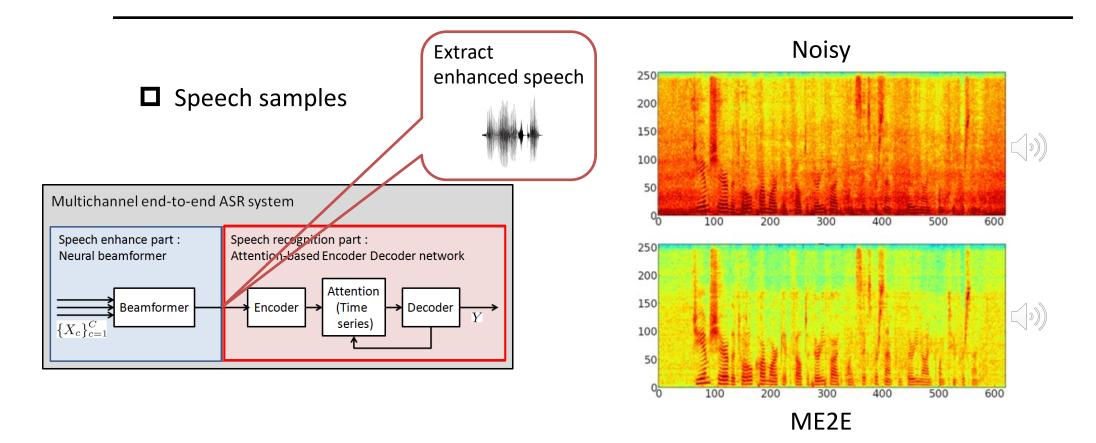
It works as speech enhancement!



Entire network are consistently optimized with ASR-level objective including speech enhancement part

□ Pairs of parallel clean and noisy data are not required for training → SE can be optimized only with noisy signals and their transcripts

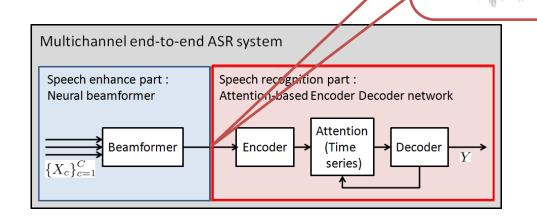
It works as speech enhancement!



Explainable neural network thanks to *signal proceeding motivated* architecture

Discussions

- Is it really better?
- The rich sound information was "projected" to the enhanced (clean) speech space
 - The sound event and room acoustic information were disappeared.
 - We need to provide supplemental information or original information to avoid this projection problem
 - Taking over the drawback of the modular system
- Why stick to the flat start?



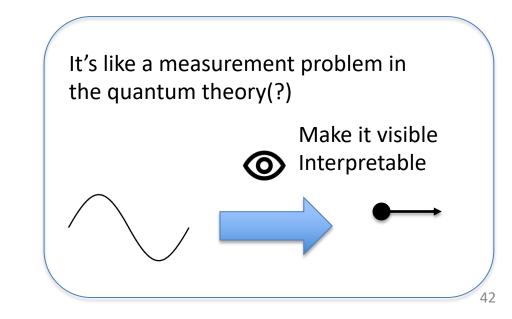
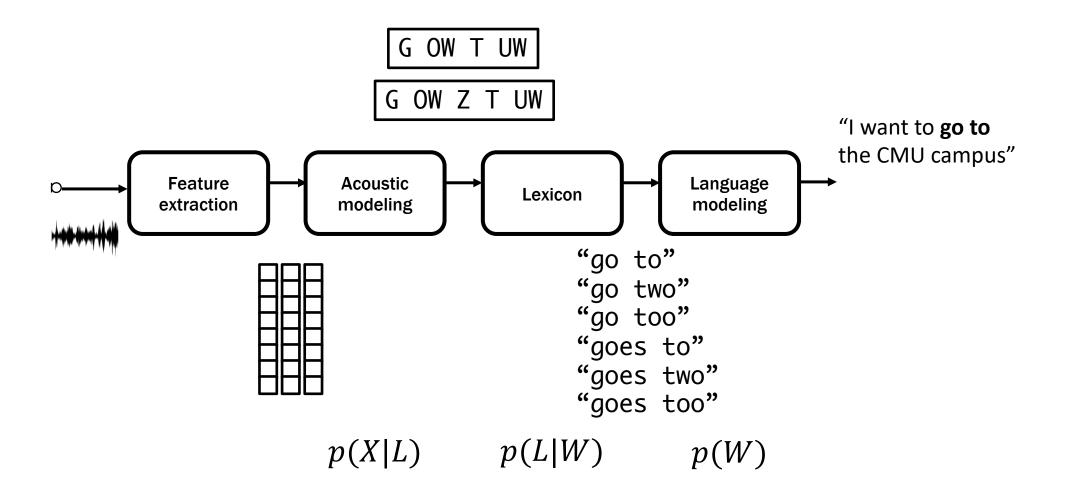


Table of contents

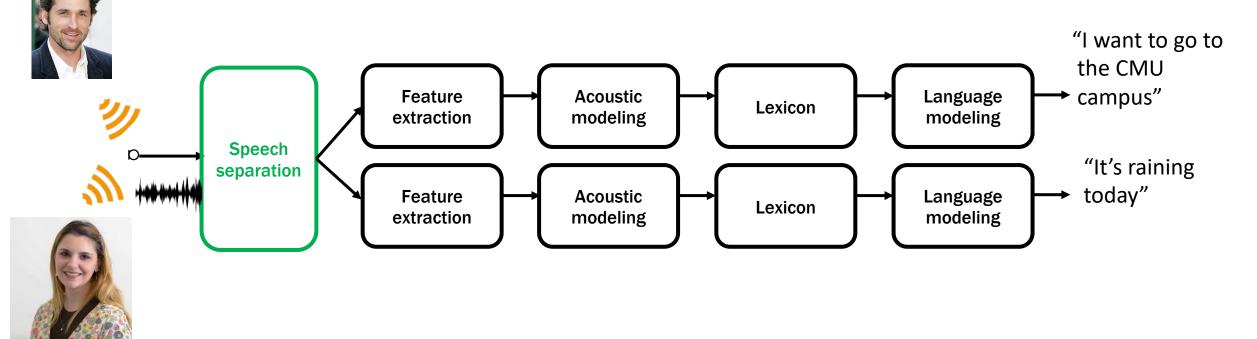
- 1. End-to-End Integration of Speech Recognition and Speech Enhancement
 - X = Speech Recognition
 - 2) X += Denoising, Dereverberation
 - 3) X += Speech Separation
 - 4) X += Speech Localization
- 2. End-to-End Integration of Speech Recognition and Speech Synthesis
- 3. Discussion

Speech recognition pipeline



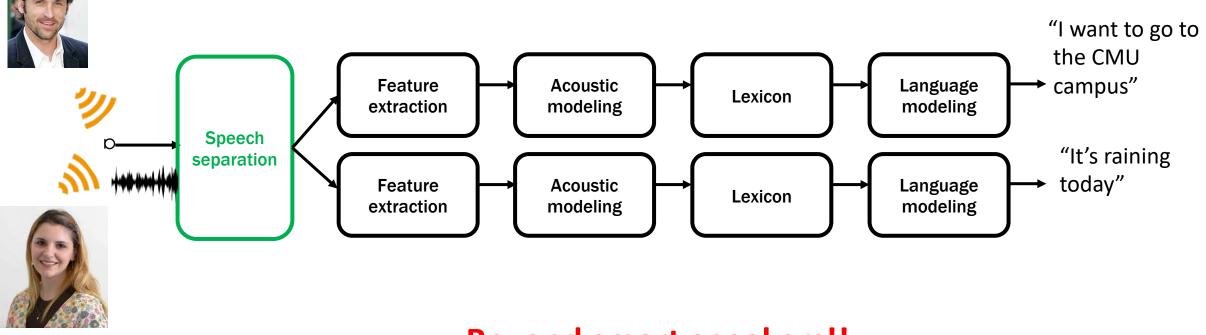
Multi-speaker speech recognition pipeline

So-called cocktail party problem

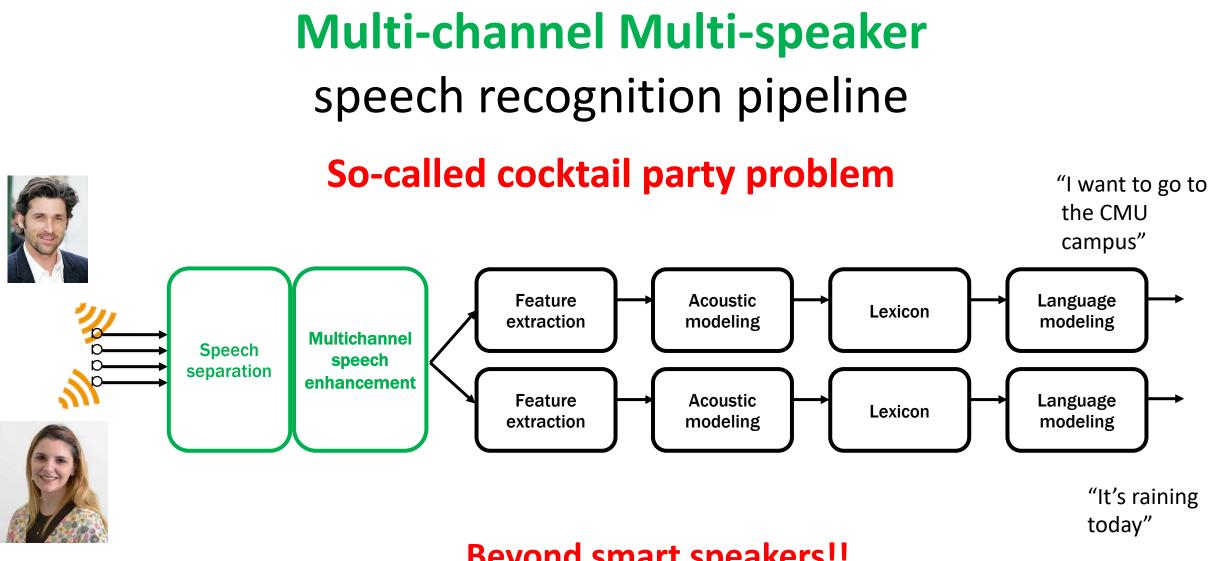


Multi-speaker speech recognition pipeline

So-called cocktail party problem

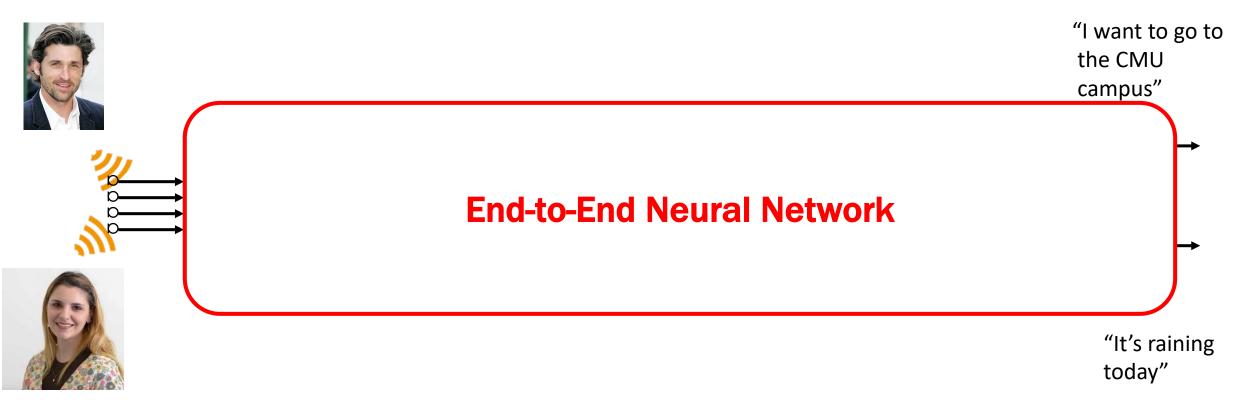


Beyond smart speakers!!



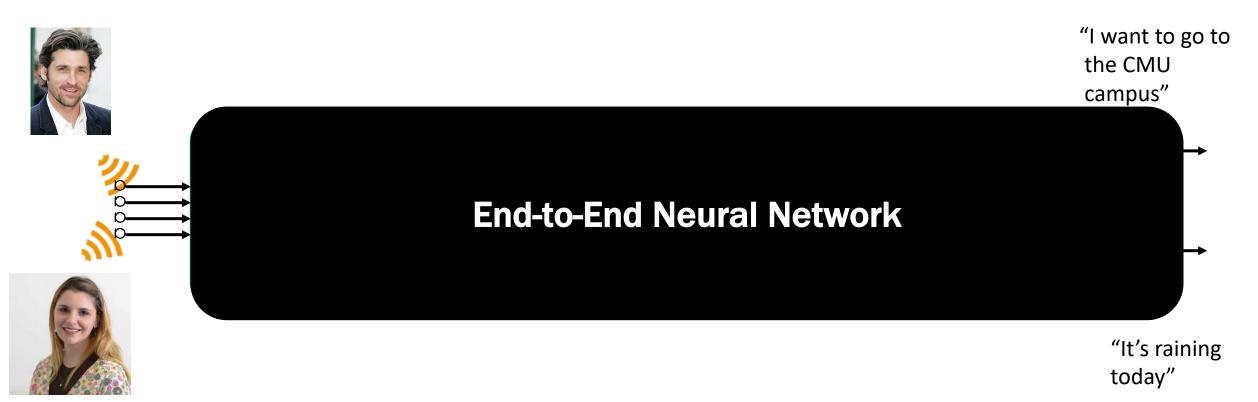
Beyond smart speakers!!

Multi-channel Multi-speaker speech recognition pipeline



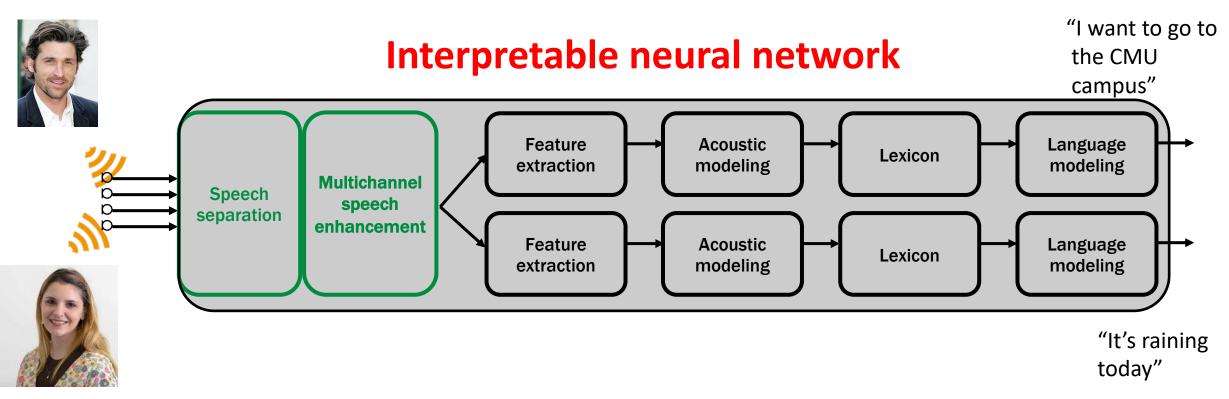
Integrates separation and recognition with a single end-to-end network

Multi-channel Multi-speaker speech recognition pipeline



Integrates separation and recognition with a single end-to-end network

Multi-channel Multi-speaker speech recognition pipeline

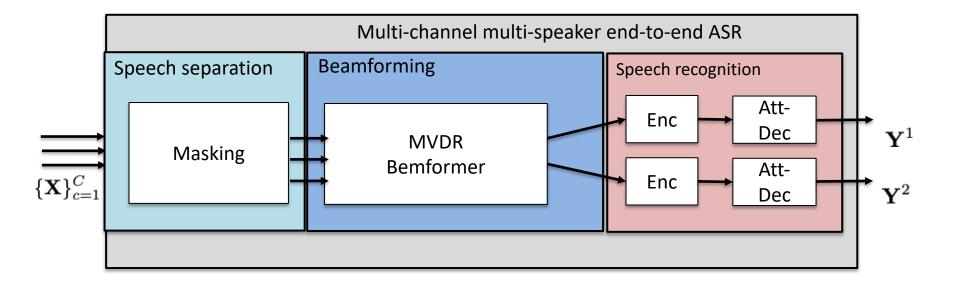


Integrates separation and recognition with a single end-to-end network

Overview of entire architecture [Xuankai Chang., 2019, ASRU]

□ Multi-channel (MI) multi-speaker (MO) end-to-end architecture (MIMO-Speech)

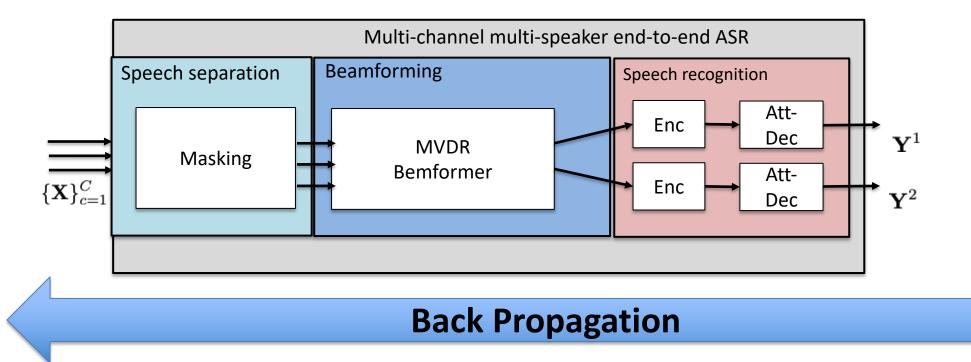
- Extend our previous model to multispeaker end-to-end network based on permutation invariant training in the ASR reference level
- Integrate the *beamforming-based speech enhancement and separation networks* inside the neural network



Overview of entire architecture [Xuankai Chang., 2019, ASRU]

Multi-channel (MI) multi-speaker (MO) end-to-end architecture (MIMO-Speech)

- Extend our previous model to multispeaker end-to-end network based on permutation invariant training in the ASR reference level
- Integrate the *beamforming-based speech enhancement and separation networks* inside the neural network

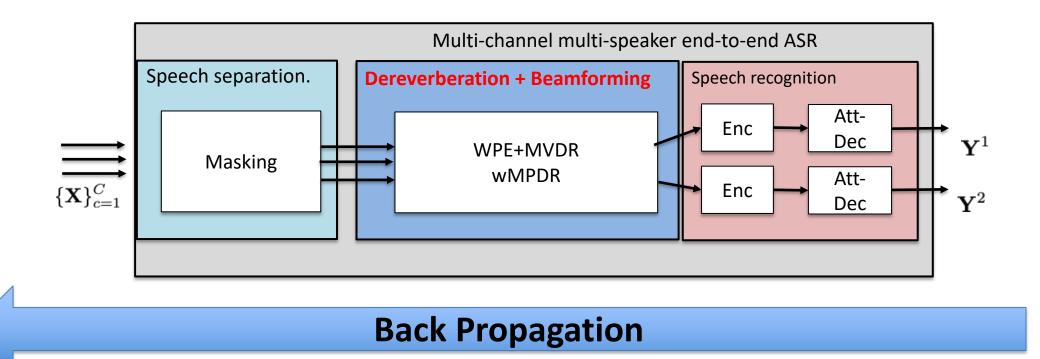


Extensions with with Improved Numerical Stability and Advanced Frontend [Wangyou Zhang, 2021, ICASSP]

Extension of MIMO-speech

- Improved numerical stability (Diagonal loading, mask flooring, precision)
- Joint dereverberaton and beamforming (WPE+MVDR or wMPDR)

MIMO speech is now robustly working under noisy reverberant conations.

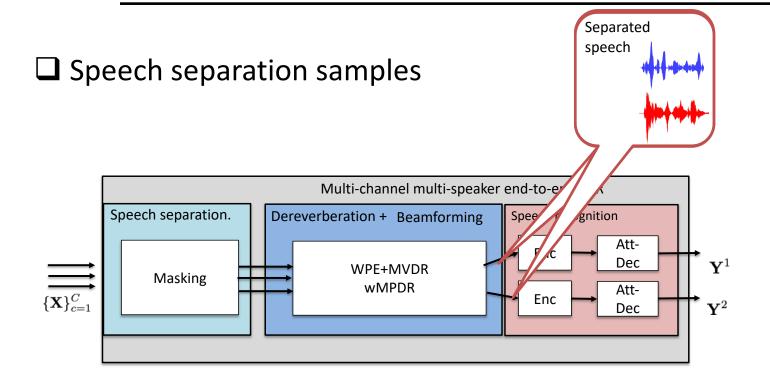


Experimental Results

□ Multi-speaker speech recognition task (Spatialized wsj-2mix corpus)

Model	Word error rate (WER) (eval)
single-channel multi-speaker (noisy speech)	29.43
single-channel multi-speaker (with beamforming, pipeline)	21.75
MIMO-Speech with joint dereverberation/beamforming (end-to-end)	15.01

Neural beamformer learns separation ability!



□ The mask-based neural beamformer and speech recognition are jointly optimized via ASR objective.

No explicit speech separation criterion is required

Explainable

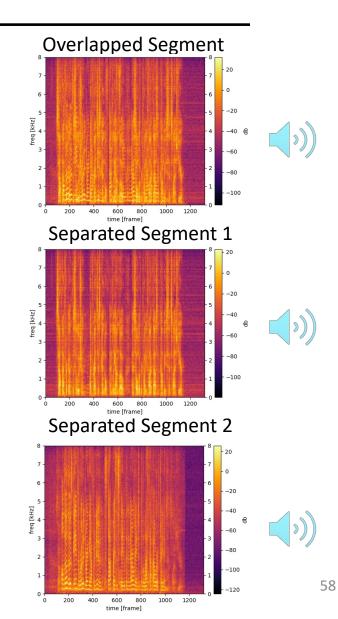
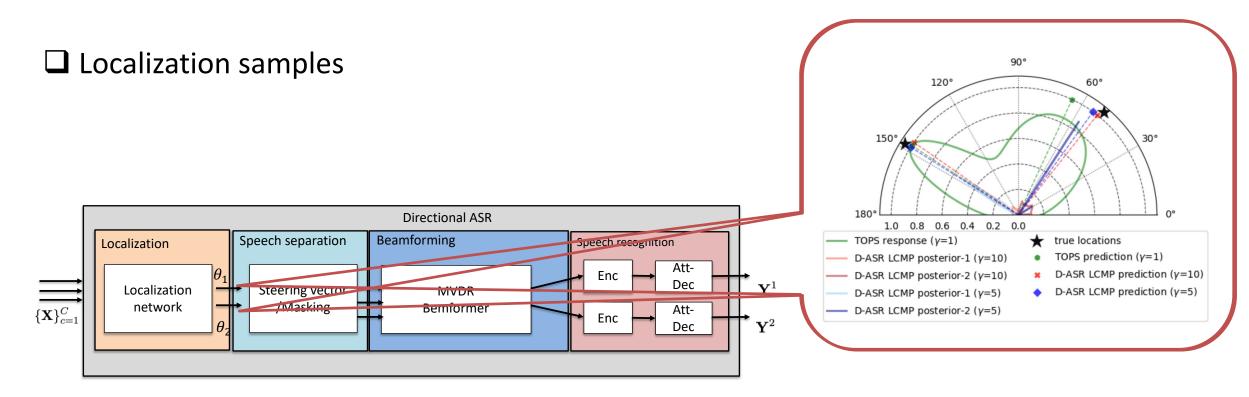


Table of contents

- 1. End-to-End Integration of Speech Recognition and Speech Enhancement
 - X = Speech Recognition
 - 2)X += Denoising, Dereverberation
 - 3) X += Speech Separation
 - 4) X += Speech Localization
- 2. End-to-End Integration of Speech Recognition and Speech Synthesis
- 3. Discussion

Directional ASR learns localization ability!

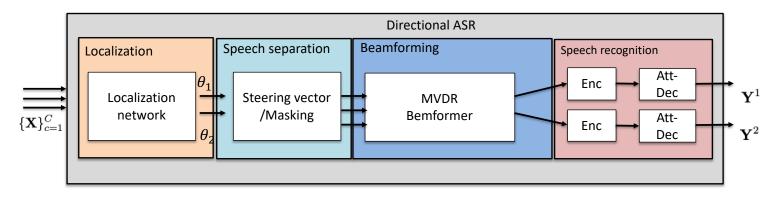


□ The localization network, mask-based neural beamformer and speech recognition are jointly optimized via ASR objective

Explainable

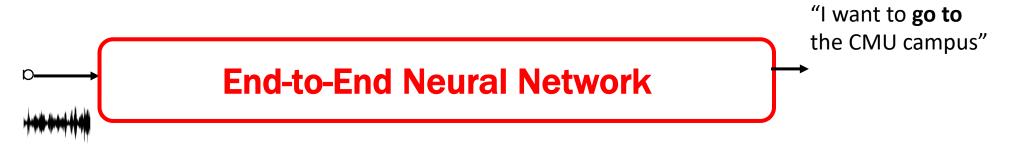
We can realize "who is speaking when, what, and where"

Further integrations?



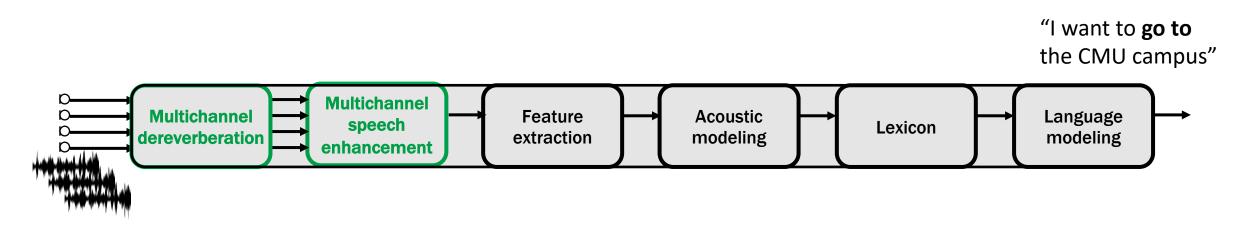
- Number of speakers?
- Audio event classification/detection?
- Emotion/Sentiment recognition?
- Room information?
- Spoken language understanding?
- Any idea?

Discussions Modular system vs. End-to-End system



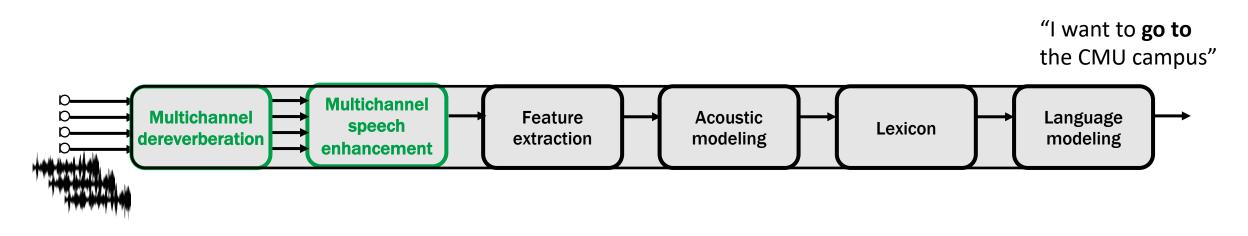
- Train a deep network that directly maps speech signal to the target letter/word sequence → We don't know what's happening. We lose the explainability.
- Greatly **simplify** the complicated model-building/inference process
- Integrate various modules by optimizing the entire network with a single objective function → Difficult to optimize it

Discussions Explainable neural network



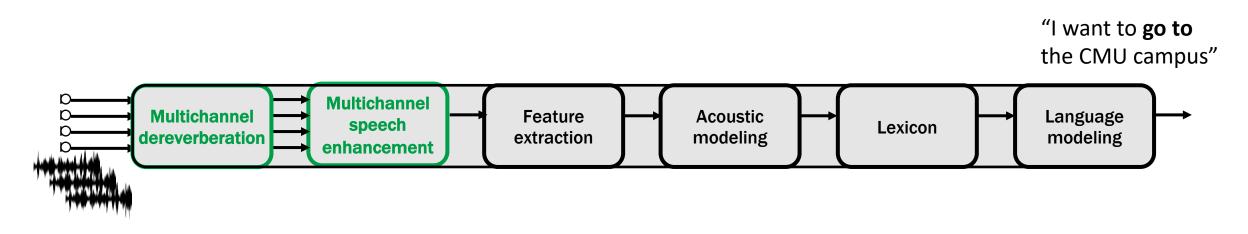
- Train a deep network that directly maps speech signal to the target letter/word sequence → We don't know what's happening. We lose the explainability. → We can keep the explainability
- Greatly **simplify** the complicated model-building/inference process
- Integrate various modules by optimizing the entire network with a single objective function →
 Difficult to optimize it → Easy to optimize with model constraint, pre-training, ease of debugging with the explainability

Discussions Explainable neural network



- Train a deep network that directly maps speech signal to the target letter/word sequence → We don't know what's happening. We lose the explainability. → We can keep the explainability
- Greatly simplify the complicated model-building/inference process \rightarrow <u>Very complicated (again)</u> \otimes
- Integrate various modules by optimizing the entire network with a single objective function →
 Difficult to optimize it → Easy to optimize with model constraint, pre-training, ease of debugging with the explainability

Discussions Explainable neural network

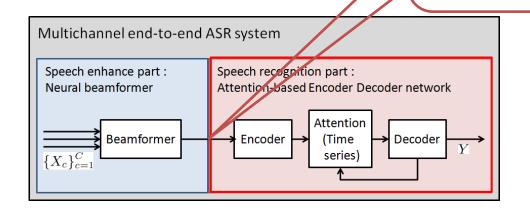


- Train a deep network that directly maps speech signal to the target letter/word sequence → We don't know what's happening. We lose the explainability. → We can keep the explainability
- Greatly simplify the complicated model-building/inference process \rightarrow Very complicated (again) \otimes
- Integrate various modules by optimizing the entire network with a single objective function →
 Difficult to optimize it → Easy to optimize with model constraint, pre-training, ease of debugging with the explainability

Open source is one solution for dealing with reproducibility, but...

Discussions

- Is it really better?
- The rich sound information was "projected" to the enhanced (clean) speech space
 - The sound event and room acoustic information were disappeared.
 - We need to provide supplemental information or original information to avoid this projection problem
 - Taking over the drawback of the modular system
- Let's go to the next topic!



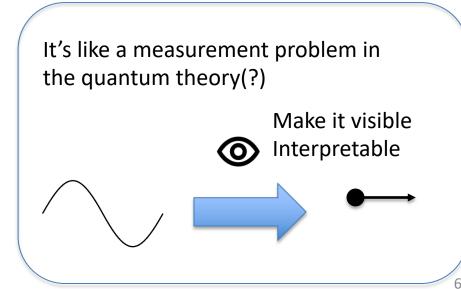
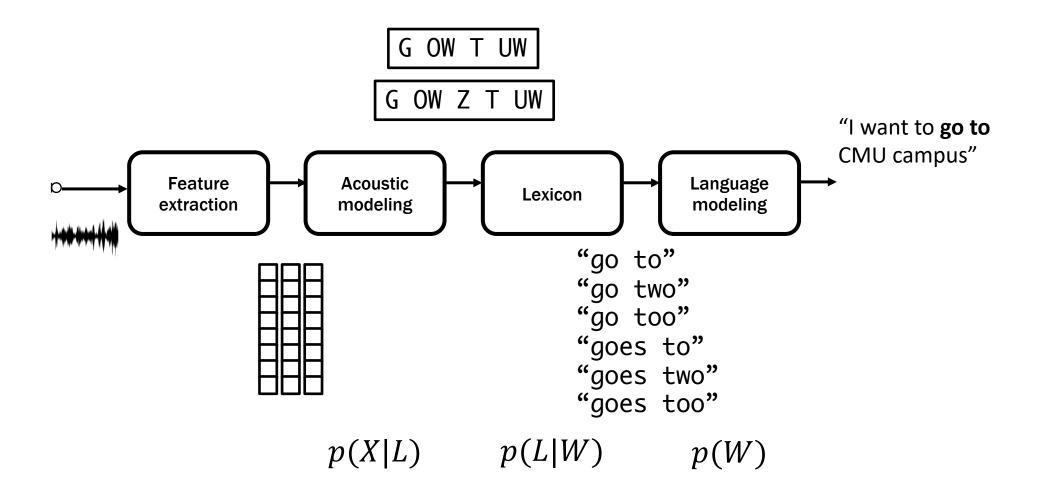
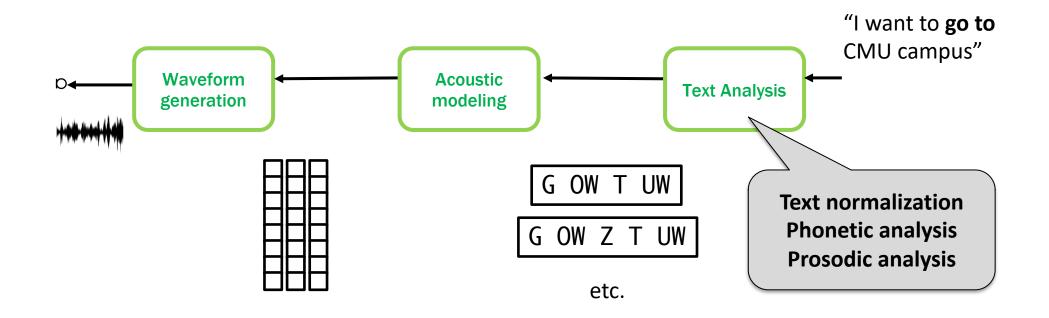


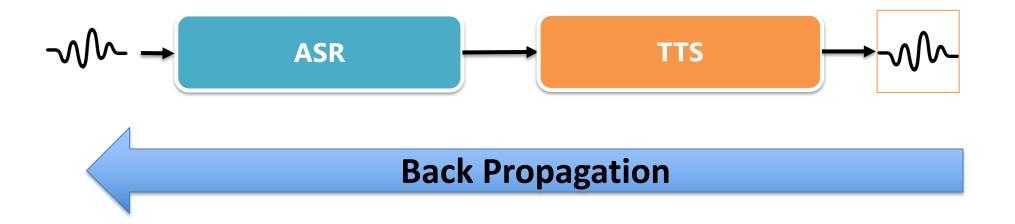
Table of contents

- 1. End-to-End Integration of Speech Recognition and Speech Enhancement
 - X = Speech Recognition
 - 2) X += Denoising, Dereverberation
 - 3) X += Speech Separation
 - 4) X += Speech Localization
- 2. End-to-End Integration of Speech Recognition and Speech Synthesis
- 3. Discussion

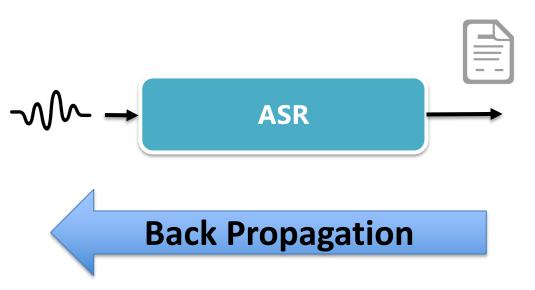
Speech recognition pipeline



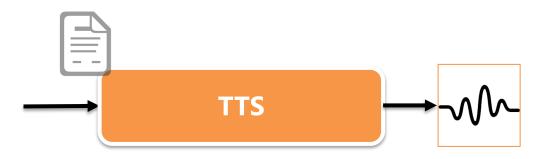




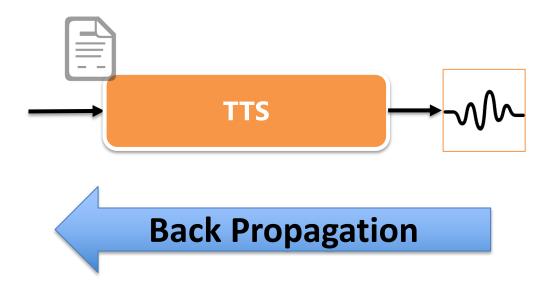
Train ASR with the *pair of audio and text*



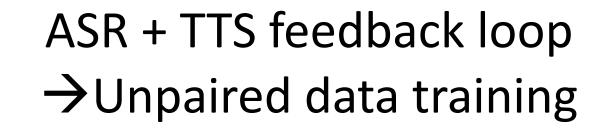
Train ASR with the *pair of audio and text*

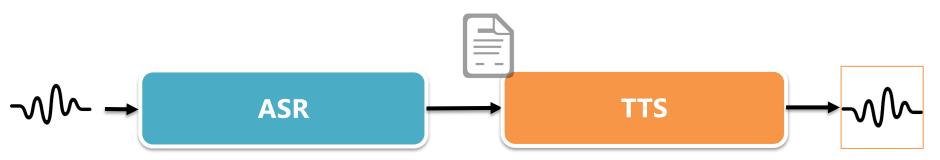


Train TTS with the *pair of audio and text*

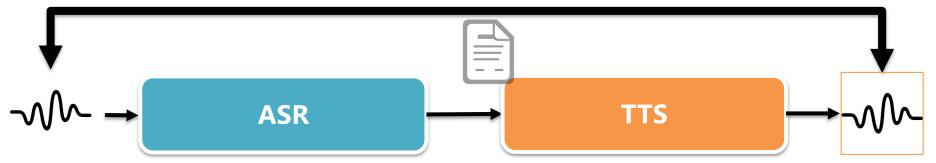


Train TTS with the *pair of audio and text*



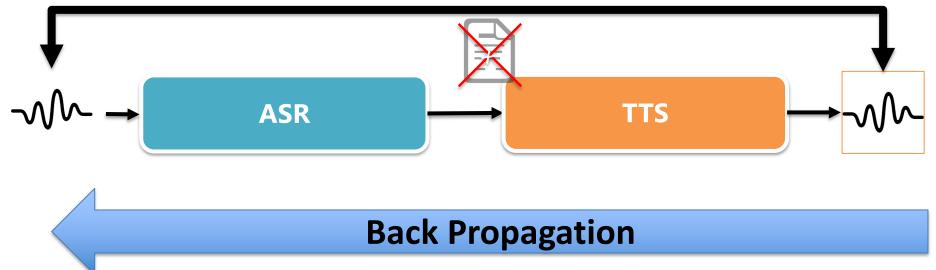


Only audio data to train both ASR and TTS



Should be similar

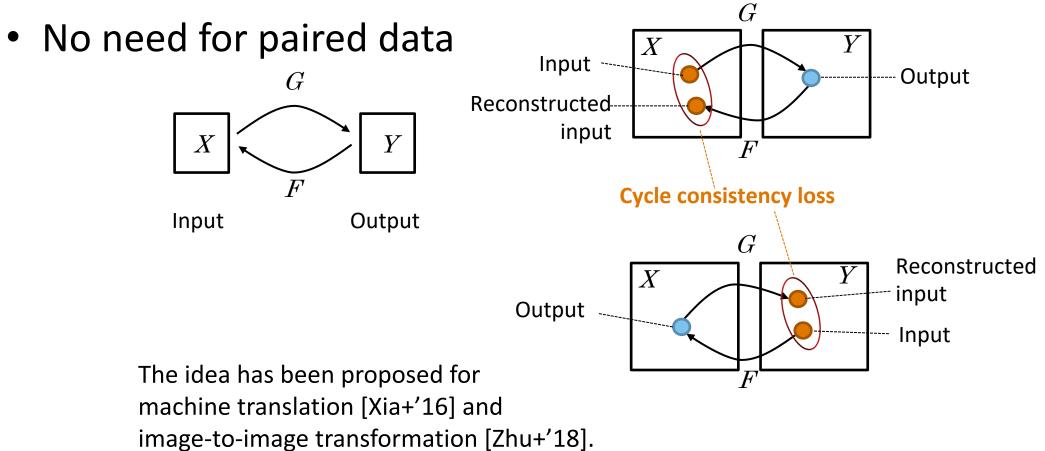
Only audio data to train both ASR and TTS



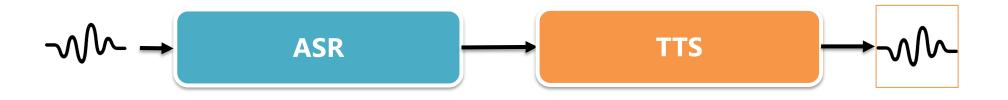
Only audio data to train both ASR and TTS We do not need a pair data!!!

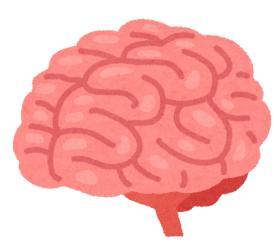
Training with cycle consistency loss

• Input and reconstruction should be similar



Joint modeling of ASR and TTS is quite natural for human learning

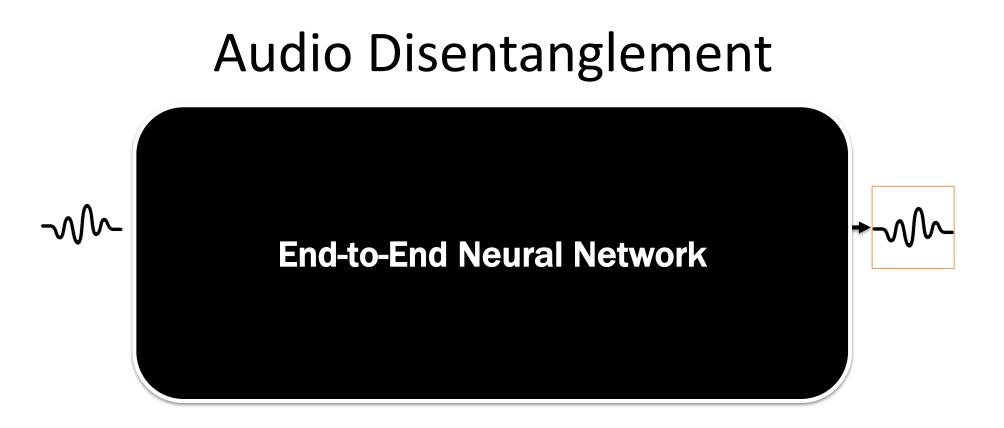




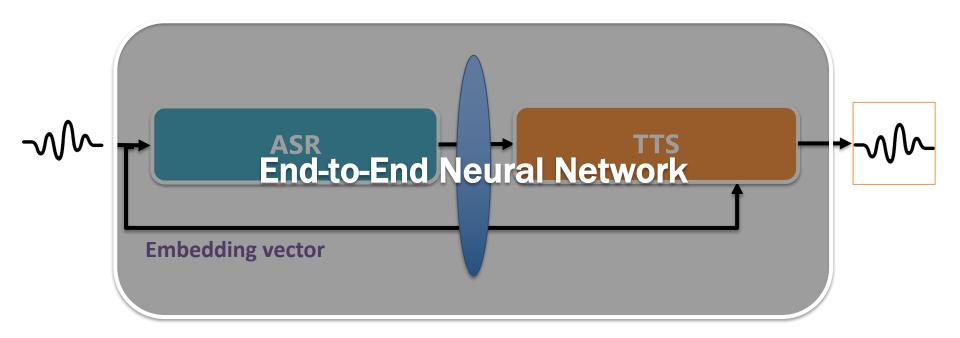
Joint modeling of speech recognition and synthesis is a very important concept in neuroscience

- Phonological loop
- Speech chain
- Motor theory

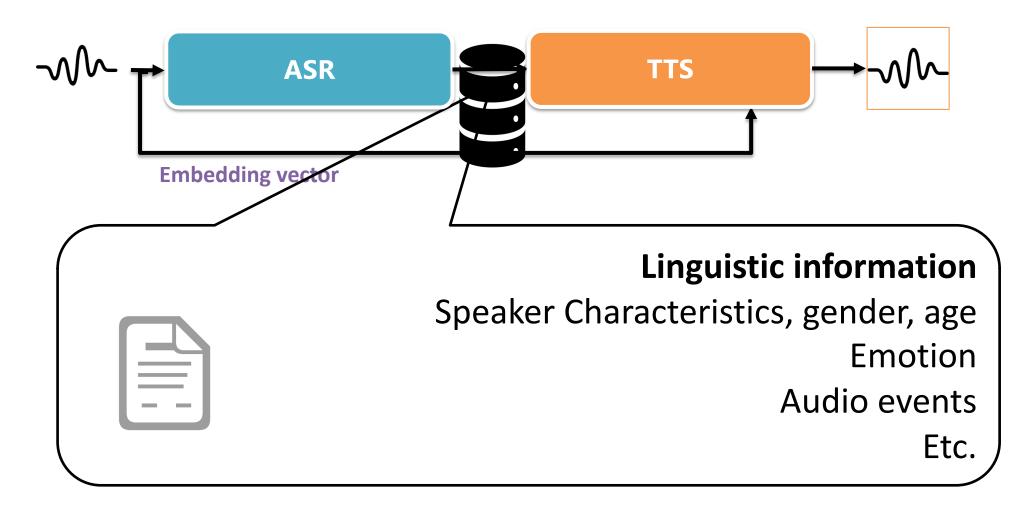
[Tjandra (2017)] [Hori (2019)] [Baskar (2021)]

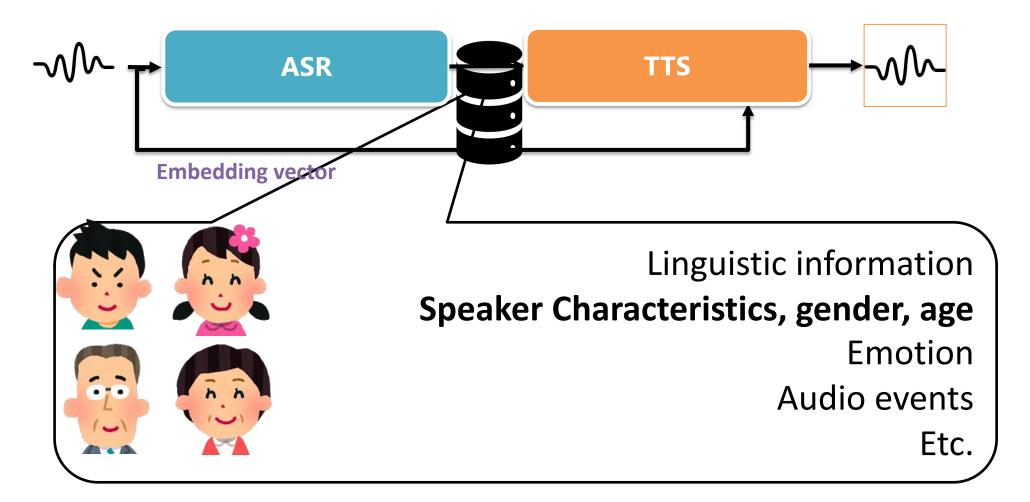


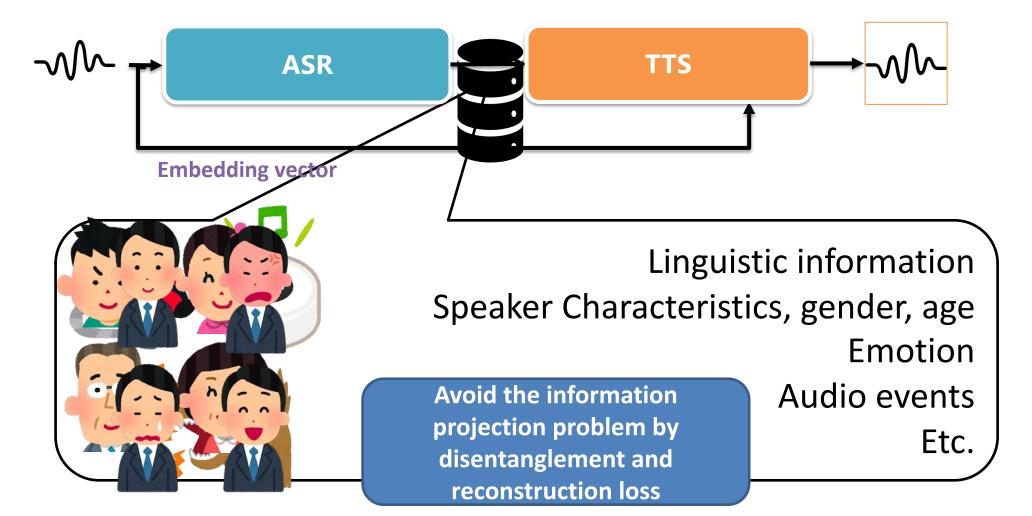
Autoencoder



Interpretable neural network

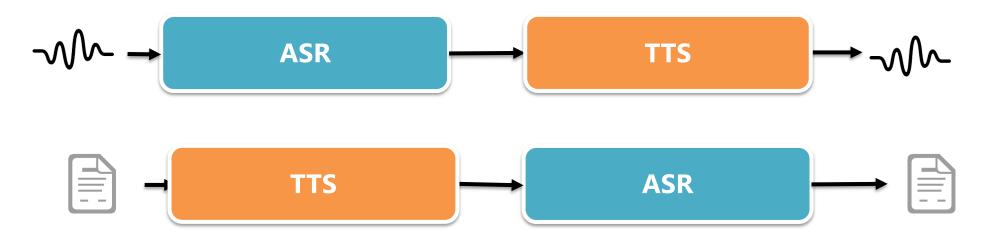




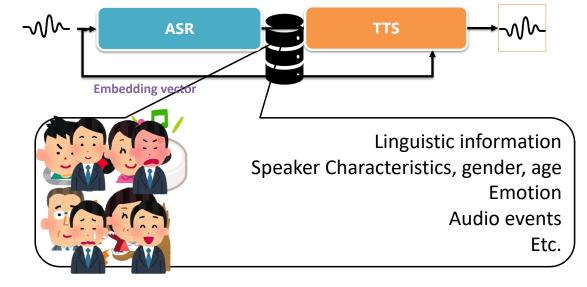


Both audio-only and text-only cycles

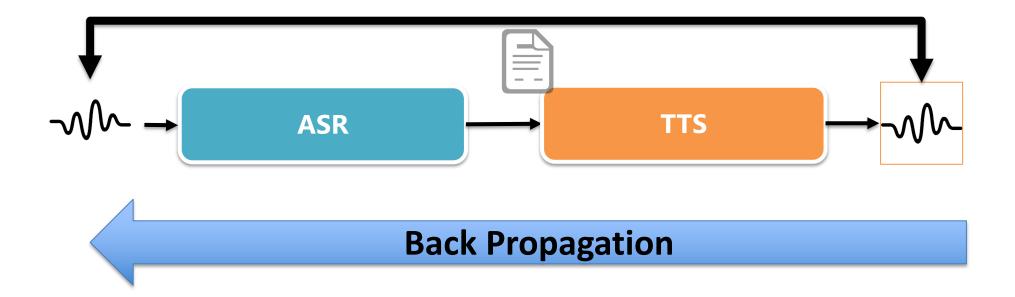
- Consider two cycle consistencies (duality)
 - Audio only: ASR+TTS
 - Text only: TTS+ASR



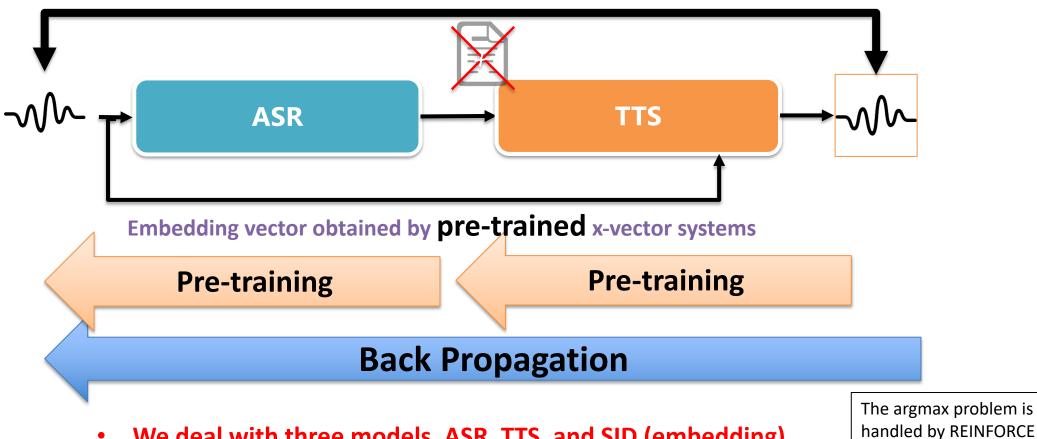
- One of the dream technologies
- No pair data
- All speech processing models are integrated and jointly trained
 - ASR, TTS, SID, Emotion, Audio event, etc.



Current realization



Current realization



- We deal with three models, ASR, TTS, and SID (embedding) •
- Pre-train all three models and back propagation with speech • only data for ASR and TTS models (SID part is fixed)

88

or gumbel softmax

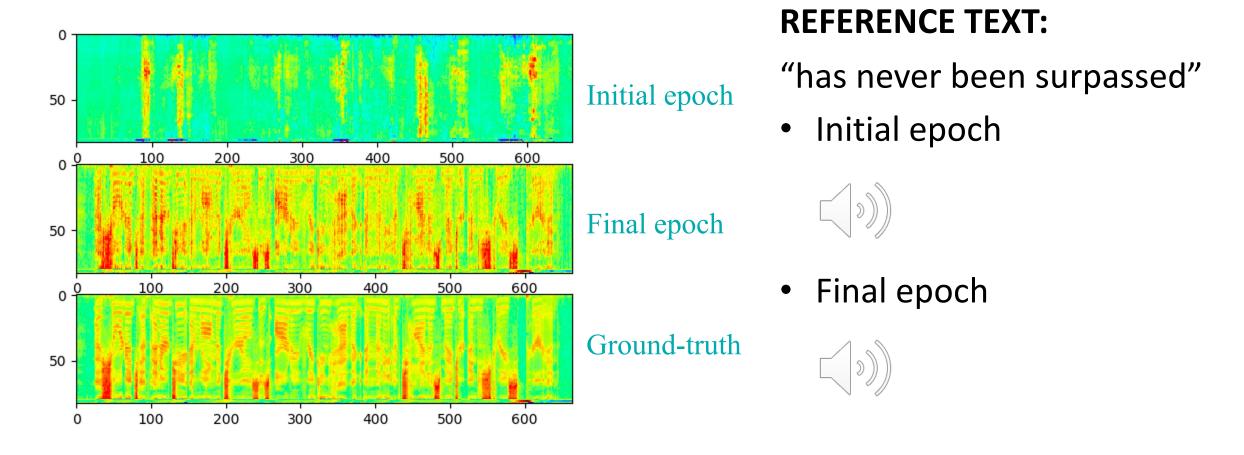
Current realization Experimental results [Hori+(2019), Baskar+(2019)]

- English Librispeech corpus (Audio book)
 - Paired data: 100h to train ASR and TTS [Shen+ (2018)] models first
 - Unpaired data: 360h (only audio and/or text only): cycle consistency training

Model	Eval-clean CER / WER [%]
Baseline	8.8 / 20.7
+ text-only cycle E2E	8.0 / 17.0
+ both audio-only/text-only cycle E2E	7.6 / 16.6

Cycle-consistency E2E improved the ASR performance

Improving TTS quality as well!



Future directions

- Incorporate more self-supervised learning ideas
 - It's the same problem setup
 - This direction has a **duality** (Speech \rightarrow Speech, Text \rightarrow Text)
- More integrations

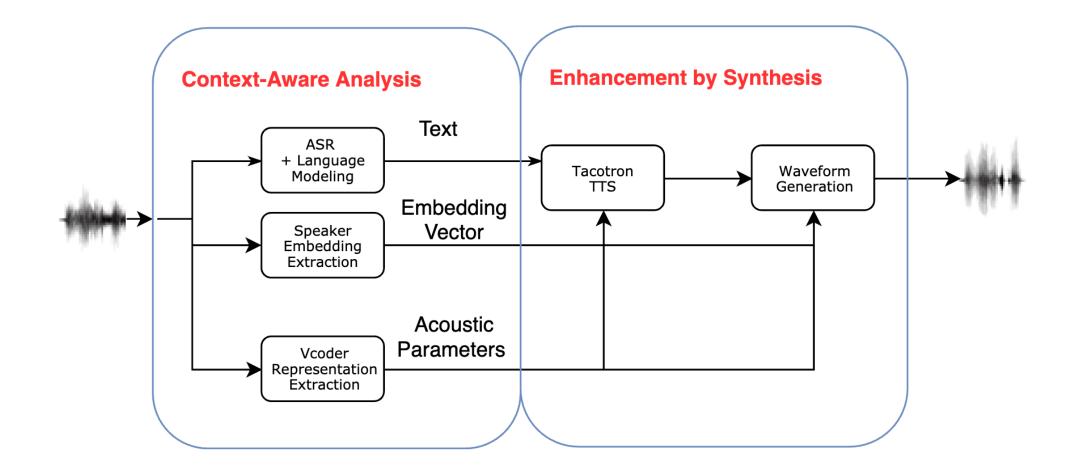
- Enhancement + Audio generation (Connect part 1 and part 2)
- It is too difficult to make it train from scratch unlike speech enhancement + speech recognition

Future directions

- Incorporate more self-supervised learning ideas
 - It's the same problem setup
 - This direction has a **duality** (Speech \rightarrow Speech, Text \rightarrow Text)
- More integrations

- Enhancement + Audio generation (Connect part 1 and part 2)
- It is too difficult to make it train from scratch unlike speech enhancement + speech recognition
 - Finding a student and sponsor

Complete disentanglements of speech signals (One of my rejected NSF proposals)



Future directions

- Incorporate more self-supervised learning ideas
 - It's the same problem setup
 - This direction has a **duality** (Speech \rightarrow Speech, Text \rightarrow Text)
- More integrations

- Enhancement + Audio generation (Connect part 1 and part 2)
- It is too difficult to make it train from scratch unlike speech enhancement + speech recognition
 - Finding a student and sponsor

Thanks a lot!