
Is Everything End-to-End?

Shinji Watanabe
Language Technologies Institute

Carnegie Mellon University

Sphinx Speech Lunch, September 1st, 2022



Sphinx Speech Lunch

• This is an official start of the Sphinx Speech Lunch in 2022F!
• Biweekly, Thursday 12:30 – 1:30pm
• Then, we can eat a lunch and continue a fun discussion until 2:00pm (or 

more!)
• Pizza will be served around the end of the talk

• Please contact Yifan Peng yifanpen@andrew.cmu.edu if you’re 
interested in presenting your work
• However, we already fixed the speaker line up in the fall semester.. But don’t 

worry! We will also have it in the spring semester (and next year, and 
forever!)

mailto:yifanpen@andrew.cmu.edu


Sphinx Speech Lunch

• Sphinx Speech Lunch is an open space
• Mix of both public and private modes of the talk
• Like “openreview” or “GitHub Organization”
• We can freely discuss the ongoing work even it is under the double-blind 

review if we make this portion as a private mode

Let’s keep Pittsburgh as a hub for speech research! 



Today’s talk

• End-to-End neural network as an integration tool for various speech 
processing.
• In addition to introduce our (or others’) previous studies, I would try 

to make a discussion point of this methodology.
• I want to activate some discussions rather than making some 

conclusions
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Modular system vs. End-to-End system

• Train a deep network that directly maps speech signal to the target letter/word 
sequence

• Greatly simplify the complicated model-building/inference process
• Integrate various modules by optimizing the entire network with a single objective 

function
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always have pros and cons



Modular system vs. End-to-End system

• Train a deep network that directly maps speech signal to the target letter/word 
sequence à We don’t know what’s happening. We lose the explainability.

• Greatly simplify the complicated model-building/inference process
• Integrate various modules by optimizing the entire network with a single objective 

function à Difficult to optimize it

“I want to go to
the CMU campus”
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End-to-End Neural Network

Today’s topic
From black box to transparent box

“I want to go to
the CMU campus”
“I want to go to
the CMU campus”

• Maintain modularity
• Toward global optimization with 

back propagation

• Explainable

Feature 
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modeling



Table of contents

1. End-to-End Integration of Speech Recognition and Speech 
Enhancement
X = Speech Recognition
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2. End-to-End Integration of Speech Recognition and Speech Synthesis
3. Discussion
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Far-field Speech Processing

Distant microphone
e.g., Human-human comm. 
(meeting, conversation analysis)
Human-robot comm.
Machine listening

Close-talking microphone
e.g., voice search
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Reverberation

Background noise

Interfering
speaker

Distant mic
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Speech recognition pipeline
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Far-field speech recognition pipeline
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How to design a neural network
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How to design a neural network?

• Black box neural network!?

Feature 
extraction

“I want to go to
the CMU campus”

Acoustic 
modeling Lexicon Language 

modeling

Multichannel
speech 

enhancement

Multichannel
dereverberation End-to-End Neural Network

24



How to design a neural network?

Interpretable neural network
• Keep the original modularity
• Carefully design each module to keep computational graphs
• We can provide interpretations for each sub neural network 

module

Feature 
extraction
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Overview of entire architecture
[Ochiai et al., 2017, ICML]

p Multichannel end-to-end (ME2E) architecture
− integrates entire process of speech enhancement (SE) and
− speech recognition (SR), by single neural-network-based architecture

↓
SE : Mask-based neural beamformer [Erdogan et al., 2016]

SR : Attention-based encoder-decoder network [Chorowski et al., 2014]
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Proposed framework
Overview of entire architecture

p Multichannel end-to-end ASR framework
－ integrates entire process of speech enhancement (SE) and
－ speech recognition (SR), by single neural-network-based architecture

↓
SE : Mask-based neural beamformer [Erdogan et al., 2016]

SR : Attention-based encoder-decoder network [Chorowski et al., 2014]

28

Based on a lot of signal 
processing oriented 
components!



Beamformer subnetwork
Imitate minimum variance distortionless response (MVDR) beamformer

• Basic equation to obtain enhanced signal !𝑥!,# at frame 𝑡 and bin 𝑓
̂𝑥!,# = 𝐠#$𝐱!,#

– 𝐱!,# ∈ ℂ$: observed 𝑀 multichannel signal

– 𝒈# ∈ ℂ$: beamforming filter coefficients

• Time-invariant beamforming filter with a reference mic 𝐮

29
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p Multichannel end-to-end (ME2E) architecture
− integrates entire process of speech enhancement (SE) and
− speech recognition (SR), by single neural-network-based architecture
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Back Propagation

- We don’t need pair data 
of noisy and clean data

- We can train both 
beamforming and ASR 
with the ASR criterion

- NOTE: It’s not new! This 
methodology was already 
established in LIMABEAM 
[Seltzer et al., 2004]



Multichannel end-to-end ASR system

Further extension
Dereverberation + beamforming + ASR

p Multichannel end-to-end ASR framework
－ integrates entire process of speech dereverberation (SD), beamforming (SB)and
－ speech recognition (SR), by single neural-network-based architecture

↓
SD : DNN-based weighted prediction error (DNN-WPE) [Kinoshita et al., 2016]

SB : Mask-based neural beamformer [Erdogan et al., 2016]
SR : Attention-based encoder-decoder network [Chorowski et al., 2014]

DNN WPE Mask-based neural 
beamformer

Attention-based 
encoder decoder network

Dereverberation Beamformer DecoderEncoder Attention

https://github.co
m/nttcslab-
sp/dnn_wpe, 
[Subramanian’19]

35

https://github.com/nttcslab-sp/dnn_wpe


Multichannel end-to-end ASR system

Further extension
Dereverberation + beamforming + ASR

p Multichannel end-to-end ASR framework
－ integrates entire process of speech dereverberation (SD), beamforming (SB)and
－ speech recognition (SR), by single neural-network-based architecture

↓
SD : DNN-based weighted prediction error (DNN-WPE) [Kinoshita et al., 2016]

SB : Mask-based neural beamformer [Erdogan et al., 2016]
SR : Attention-based encoder-decoder network [Chorowski et al., 2014]

DNN WPE Mask-based neural 
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Dereverberation Beamformer DecoderEncoder Attention

Back Propagation

https://github.co
m/nttcslab-
sp/dnn_wpe, 
[Subramanian’19]
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Dereverberation subnetwork
Imitate multichannel linear prediction filtering [Nakatani+(2010)] 

• Basic equation (Δ delayed linear prediction)

– (𝑏: frequency bin, 𝑀: # channels)
– Filter:               , history of the observation signal:  

• Update equations (well-known maximum likelihood solutions)

37

Obtained from DNN
[Kinoshita et al., 2016]



Experimental Results 

p Noisy reverberant speech recognition task (REVERB and 
DIRHA-WSJ)
− Sigle-channel E2E + dereverberation + beamforming (pipeline)
− Multichannel E2E (integration of speech enhancement and recognition)

model REVERB
Room1 Near

REVERB
Room1 Far

DIRHA WSJ Real

E2E baseline 
(no enhancement)

23.9 26.8 55.3

Single-channel E2E
+ Dereverberation 
+ Beamforming (pipeline)

11.0 10.8 31.3

Multichannel E2E (end-to-
end)

8.7 12.4 29.1

https://github.co
m/nttcslab-
sp/dnn_wpe, 
[Subramanian’19]
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Extract
enhanced speech

Noisy

ME2E

p Speech samples

It works as speech enhancement!

p Entire network are consistently optimized with ASR-level objective including speech 
enhancement part

p Pairs of parallel clean and noisy data are not required for training → SE can be 
optimized only with noisy signals and their transcripts
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Extract
enhanced speech

Noisy

ME2E

p Speech samples

It works as speech enhancement!

p Entire network are consistently optimized with ASR-level objective including speech 
enhancement part

p Pairs of parallel clean and noisy data are not required for training → SE can be 
optimized only with noisy signals and their transcripts

Black box neural network 
(e.g., VGG)
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Extract
enhanced speech

Noisy

ME2E

p Speech samples

It works as speech enhancement!

Explainable neural network thanks to signal 
proceeding motivated architecture

41



Discussions
• Is it really better?
• The rich sound information was 

“projected” to the enhanced (clean) 
speech space
– The sound event and room acoustic 

information were disappeared.
– We need to provide supplemental 

information or original information to avoid 
this projection problem

– Taking over the drawback of the modular 
system

• Why stick to the flat start?

42

It’s like a measurement problem in 
the quantum theory(?)

Make it visible
Interpretable
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Multi-speaker speech recognition pipeline

So-called cocktail party problem
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Overview of entire architecture
[Xuankai Chang., 2019, ASRU]

q Multi-channel (MI) multi-speaker (MO) end-to-end architecture (MIMO-Speech)
• Extend our previous model to multispeaker end-to-end network based on permutation 

invariant training in the ASR reference level
• Integrate the beamforming-based speech enhancement and separation networks inside 

the neural network

Multi-channel multi-speaker end-to-end ASR

Beamforming

MVDR
Bemformer

Speech recognition

Enc

Enc

Att-
Dec

Att-
Dec

51
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Overview of entire architecture
[Xuankai Chang., 2019, ASRU]
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Back Propagation

Multi-channel multi-speaker end-to-end ASR

Beamforming

MVDR
Bemformer

Speech recognition

Enc

Enc

Att-
Dec

Att-
Dec

Speech separation

Masking

q Multi-channel (MI) multi-speaker (MO) end-to-end architecture (MIMO-Speech)
• Extend our previous model to multispeaker end-to-end network based on permutation 

invariant training in the ASR reference level
• Integrate the beamforming-based speech enhancement and separation networks inside 

the neural network



Extensions with with Improved Numerical Stability and Advanced Frontend
[Wangyou Zhang, 2021, ICASSP]

q Extension of MIMO-speech
• Improved numerical stability (Diagonal loading, mask flooring, precision)
• Joint dereverberaton and beamforming (WPE+MVDR or wMPDR)

MIMO speech is now robustly working under noisy reverberant conations.
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Experimental Results

q Multi-speaker speech recognition task (Spatialized wsj-2mix corpus)

Model Word error rate (WER)
(eval)

single-channel multi-speaker
(noisy speech)

29.43

single-channel multi-speaker
(with beamforming, pipeline)

21.75

MIMO-Speech with joint 
dereverberation/beamforming
(end-to-end)

15.01
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Multi-channel multi-speaker end-to-end ASR

Beamforming

WPE+MVDR
wMPDR

Speech recognition

Enc

Enc

Att-
Dec

Att-
Dec

Speech separation.     

Masking

Dereverberation +

Neural beamformer learns separation ability!

q Speech separation samples

q The mask-based neural beamformer and speech recognition are
jointly optimized via ASR objective.

q No explicit speech separation criterion is required
q Explainable

Separated
speech

Overlapped Segment

Separated Segment 1

Separated Segment 2
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Directional ASR learns localization ability!

q Localization samples

q The localization network, mask-based neural beamformer and speech
recognition are jointly optimized via ASR objective

q Explainable
q We can realize “who is speaking when, what, and where”
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Further integrations?

• Number of speakers?
• Audio event classification/detection?
• Emotion/Sentiment recognition?
• Room information?
• Spoken language understanding?
• Any idea?
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Discussions
Modular system vs. End-to-End system

• Train a deep network that directly maps speech signal to the target letter/word 
sequence à We don’t know what’s happening. We lose the explainability.

• Greatly simplify the complicated model-building/inference process
• Integrate various modules by optimizing the entire network with a single objective 

function à Difficult to optimize it

“I want to go to
the CMU campus”

End-to-End Neural Network
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• Train a deep network that directly maps speech signal to the target letter/word sequence à We 
don’t know what’s happening. We lose the explainability. à We can keep the explainability

• Greatly simplify the complicated model-building/inference process à Very complicated (again) L
• Integrate various modules by optimizing the entire network with a single objective function à

Difficult to optimize it à Easy to optimize with model constraint, pre-training, ease of debugging 
with the explainability

Open source is one 
solution for dealing with 
reproducibility, but…



Discussions
• Is it really better?
• The rich sound information was 

“projected” to the enhanced (clean) 
speech space
– The sound event and room acoustic 

information were disappeared.
– We need to provide supplemental 

information or original information to avoid 
this projection problem

– Taking over the drawback of the modular 
system

• Let’s go to the next topic!
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Speech synthesis pipeline
(or Text To Speech, TTS)

Waveform
generation

“I want to go to
CMU campus”

Acoustic 
modeling Text Analysis
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Text normalization
Phonetic analysis
Prosodic analysis

etc.
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ASR + TTS feedback loop
àUnpaired data training

Back Propagation
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ASR + TTS feedback loop
àUnpaired data training

ASR

Train ASR with the pair of audio and text
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ASR + TTS feedback loop
àUnpaired data training

ASR

Train ASR with the pair of audio and text
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ASR + TTS feedback loop
àUnpaired data training
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Train TTS with the pair of audio and text
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ASR + TTS feedback loop
àUnpaired data training

TTS

Train TTS with the pair of audio and text
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ASR + TTS feedback loop
àUnpaired data training

ASR TTS

Only audio data to train both ASR and TTS
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ASR + TTS feedback loop
àUnpaired data training

Only audio data to train both ASR and TTS

Should be similar
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ASR + TTS feedback loop
àUnpaired data training

Only audio data to train both ASR and TTS
We do not need a pair data!!!

Back Propagation

77

ASR TTS

x



Training with cycle consistency loss

• Input and reconstruction should be similar
• No need for paired data

X Y

X Y

Cycle consistency loss

X Y

Input Output

Input

Input

Reconstructed
input

Reconstructed
input

Output

Output

G

F

G

F

F

G

The idea has been proposed for
machine translation [Xia+’16] and
image-to-image transformation [Zhu+’18].
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Joint modeling of ASR and TTS is quite natural for 
human learning

Joint modeling of speech recognition and 
synthesis is a very important concept in 
neuroscience
- Phonological loop
- Speech chain
- Motor theory

79

ASR TTS

[Tjandra (2017)]
[Hori (2019)]
[Baskar (2021)]



Audio Disentanglement

Embedding vector
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ASR TTS
End-to-End Neural Network

Autoencoder



Audio Disentanglement

Embedding vector
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ASR TTS
End-to-End Neural Network

Interpretable neural network



Audio Disentanglement

Embedding vector

Linguistic information
Speaker Characteristics, gender, age

Emotion
Audio events

Etc.
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Audio Disentanglement

Linguistic information
Speaker Characteristics, gender, age

Emotion
Audio events

Etc.
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ASR TTS

Embedding vector

Avoid the information 
projection problem by 
disentanglement and 

reconstruction loss



Both audio-only and text-only cycles

• Consider two cycle consistencies (duality)
– Audio only: ASR+TTS
– Text only: TTS+ASR

ASR TTS

ASRTTS
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Audio Disentanglement

• One of the dream 
technologies

• No pair data
• All speech processing models 

are integrated and jointly 
trained
– ASR, TTS, SID, Emotion, Audio 

event, etc.
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Linguistic information
Speaker Characteristics, gender, age

Emotion
Audio events

Etc.

ASR TTS

Embedding vector



Current realization
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Back Propagation

ASR TTS



Current realization

• We deal with three models, ASR, TTS, and SID (embedding) 
• Pre-train all three models and back propagation with speech 

only data for ASR and TTS models (SID part is fixed)

Back Propagation
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ASR TTS

x

Pre-training Pre-training

Embedding vector obtained by pre-trained x-vector systems 

The argmax problem is 
handled by REINFORCE 
or gumbel softmax



Current realization
Experimental results [Hori+(2019), Baskar+(2019)]

• English Librispeech corpus (Audio book)
– Paired data: 100h to train ASR and TTS [Shen+ (2018)] models first
– Unpaired data: 360h (only audio and/or text only): cycle consistency training

Model Eval-clean
CER / WER [%]

Baseline 8.8 / 20.7

+ text-only cycle E2E 8.0 / 17.0

+ both audio-only/text-only cycle E2E 7.6 / 16.6

Cycle-consistency E2E improved 
the ASR performance
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Improving TTS quality as well!

REFERENCE TEXT:
“has never been surpassed”
• Initial epoch

• Final epoch

Initial epoch

Final epoch

Ground-truth
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Future directions
• Incorporate more self-supervised learning ideas

– It’s the same problem setup
– This direction has a duality (Speech à Speech, Text à Text)

• More integrations

– Enhancement + Audio generation (Connect part 1 and part 2)

• It is too difficult to make it train from scratch unlike speech enhancement + speech recognition
– Finding a student and sponsor
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ASR TTS

Embedding vector



Complete disentanglements of speech signals
(One of my rejected NSF proposals)
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Future directions
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Thanks a lot!


