

End-to-end Unsupervised ASR and Its Application

Presentor: Jiatong Shi

jiatongs@andrew.cmu.edu

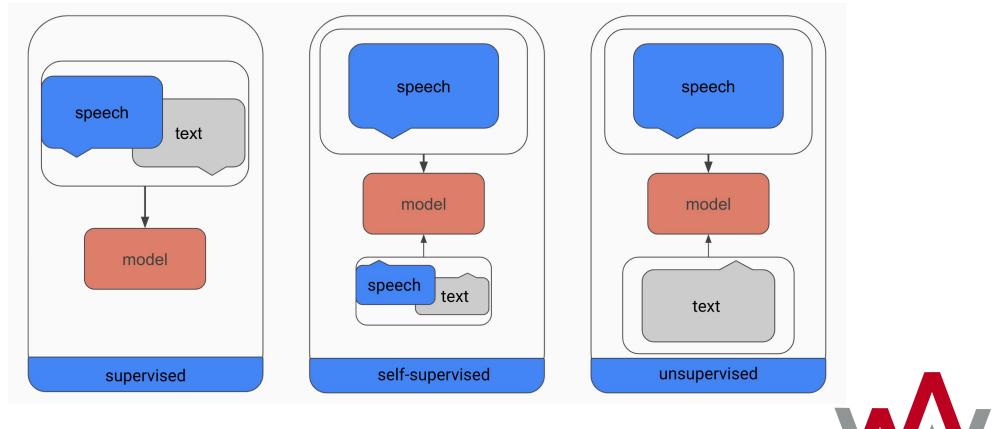
Part of Works from JSALT2022-Pre-training Team

Content

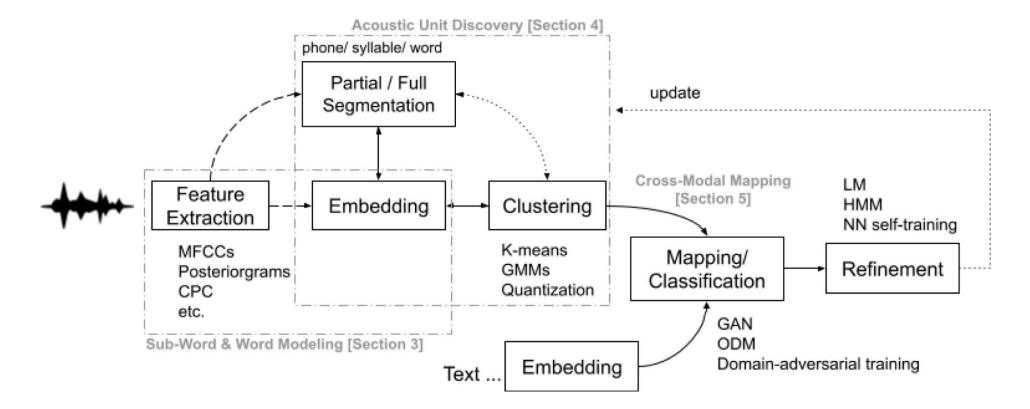
- Unsupervised ASR
 - A bit of the near history
 - Recent works with self-supervised learning
- Empirical results and challenges with unsupervised ASR
- Application of unsupervised ASR
- On-going work (EURO project)

Unsupervised ASR

• Supervision – Self-supervision - Unsupervision

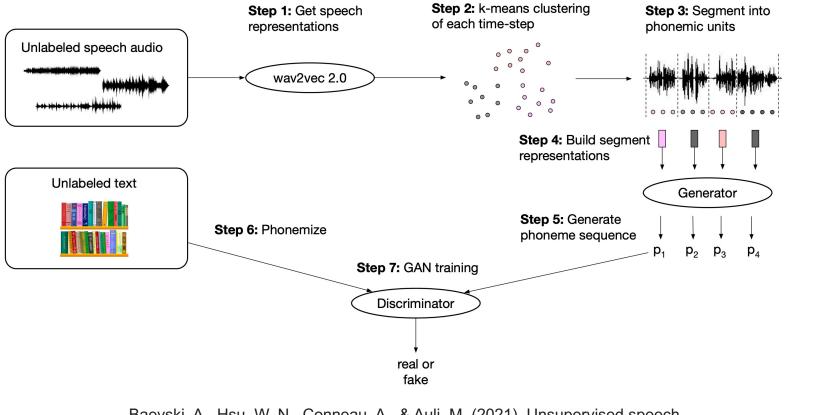


Unsupervised ASR



Aldarmaki, H., Ullah, A., Ram, S., & Zaki, N. (2022). Unsupervised automatic speech recognition: A review. Speech Communication.

Recent works with self-supervised model



Baevski, A., Hsu, W. N., Conneau, A., & Auli, M. (2021). Unsupervised speech recognition. *Advances in Neural Information Processing Systems*, *34*, 27826-27839.

Some Issues with the training scheme

- Instability
- Kmeans-segmentation is usually smaller than real phoneme segments
- Possibility to generate trival output

Solution to previous issues

- Gradient penalty loss \rightarrow reduce drastic changes to discriminator
- Segmentation smoothness loss → encourage similar output between each segments
- Phoneme diversity loss → maximum entropy of prediction distribution to escape from trivial solutions

Wav2vec-u in the paper

Model	Unlabeled	$\mathbf{L}\mathbf{M}$	dev		test	
	data		clean	other	clean	other
960h - Supervised learning						
DeepSpeech 2 (Amodei et al., 2016)	-	$5 ext{-gram}$	-	-	5.33	13.25
Fully Conv (Zeghidour et al., 2018)	-	ConvLM	3.08	9.94	3.26	10.47
TDNN+Kaldi (Xu et al., 2018)	-	4-gram	2.71	7.37	3.12	7.63
SpecAugment (Park et al., 2019)	-	-	-	-	2.8	6.8
SpecAugment (Park et al., 2019)	-	RNN	-	-	2.5	5.8
ContextNet (Han et al., 2020)	-	\mathbf{LSTM}	1.9	3.9	1.9	4.1
Conformer (Gulati et al., 2020)	-	LSTM	2.1	4.3	1.9	3.9
960h - Self and semi-supervised learn	ing					
Transf. $+$ PL (Synnaeve et al., 2020)	LL-60k	CLM+Transf.	2.00	3.65	2.09	4.11
IPL (Xu et al., 2020b)	LL-60k	4-gram+Transf.	1.85	3.26	2.10	4.01
NST (Park et al., 2020)	LL-60k	\mathbf{LSTM}	1.6	3.4	1.7	3.4
wav2vec 2.0 (Baevski et al., 2020c)	LL-60k	Transf.	1.6	3.0	1.8	3.3
wav2vec $2.0 + NST$ (Zhang et al., 2020b)	LL-60k	LSTM	1.3	2.6	1.4	2.6
Unsupervised learning						
wav2vec-U LARGE	LL-60k	4-gram	13.3	15.1	13.8	18.0

Wav2vec-u Robustness

Speech					Text		
Corpus	Hour	LibriLM	Wiki	NewsCrawl	ImageC	matched*	unmatched*
		Fu	ill amoun	t of speech			
Librispeech train	960	20.25	26.02	21.83	31.59	N/A	N/A
TED-LIUM v3	452	31.62	35.21	32.05	41.87	28.13	N/A
SwitchBoard	300	92.10	93.08	95.25	80.15	35.80	N/A
SwitchBoard-w2v2-all	300	44.38	94.12	43.44	72.10	32.34	N/A
	Little amount of speech						
Librispeech train	9.6	22.51	29.03	24.65	105.00	-	-
TED-LIUM v3	10	36.01	88.26	33.52	85.92	29.13	32.44
SwitchBoard	10	95.86	-	-	-	95.13	93.48
SwitchBoard-w2v2-all	10	92.10	-	-	-	96.14	93.48

Lin, G. T., Hsu, C. J., Liu, D. R., Lee, H. Y., & Tsao, Y. (2022, May). Analyzing the robustness of unsupervised speech recognition. In *ICASSP* 2022-2022 *IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)* (pp. 8202-8206). IEEE.

CMU-LTI WAV Lab

Our Wav2vec-u Experiments (Librispeech-100)

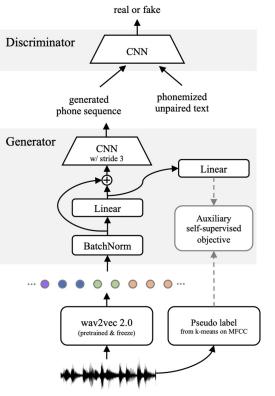
- Key findings:
 - Some factors are **crucial to good convergence**:
 - Layer for feature extraction -> 7, 14 are the best, layer combination cannot always converge
 - Network simplicity -> For example, adding two layer CNN would harm the results (+10-20 PER or not converge); Layer combination sometimes also hurt results (+10 PER)
 - Some factors are good to tune
 - Preprocessing parameters: cluster number fo Kmean pooling (K=128, K=256, K=64) and adjacent pooling
 - Training parameters: learning rates, weights for losses (for gradient penalty, phoneme diversity, and others)
- Our best PER results with wav2vec-u after tuning on Librispeech-100 is 24.1%

We want an end-to-end version...

CMU-LTI WAV Lab

We want an end-to-end version...

- Use an Batchnorm to replace the preprocessing
- Add K-means cluster objectives to stable the results
- Use CNN with stride to conduct downsampling



Liu, A. H., Hsu, W. N., Auli, M., & Baevski, A. (2022). Towards End-to-end Unsupervised Speech Recognition. *arXiv preprint arXiv:2204.02492*.

According to the paper:

	P	Pre-processing			Generator configuration				Result	
	Adjacent pooling	Cluster pooling	PCA reduction	Batch norm.	Linear proj.	Auxiliary loss	Stride	Freq. (Hz)	Average PER	
wav2vec-U	\checkmark	\checkmark	\checkmark	-	-	-	1	14	18.8 ± 0.9	
step (i)	-	\checkmark	\checkmark	-	-	-	1	28	> 100	
step (ii)	-	\checkmark	\checkmark	-	-	-	2	14	18.5 ± 0.6	
step (iii)	-	-	\checkmark	-	-	-	2	25	> 100	
step (iv)	-	-	\checkmark	-	-	-	3	16	19.0 ± 0.9	
step (v)	-	-	-	-	-	-	3	16	> 100	
step (vi)	-	-	-	\checkmark	-	-	3	16	16.4 ± 0.7	
step (vii)	-	-	-	\checkmark	\checkmark	-	3	16	15.9 ± 1.1	
wav2vec-U 2.0	-	-	-	\checkmark	\checkmark	\checkmark	3	16	$\textbf{13.6} \pm \textbf{0.9}$	
input wav2vec 2.	0 feature							50	-	
ground truth pho	ne sequence							~ 10	-	

Our Wav2vec-U 2.0 Experiments (Librispeech100)

- Key factor for convergence:
 - Batchnorm with scaling factor + large batch size
 - Standard scaling factor 1.0 does not suitable for wav2vec2 feature (might different for other SSLs?) -> get +20PER or non-converge
 - Large batch size is necessary to get reasonable performances -> get non-converge results with small batch size like 10
 - Network simplicity
 - Similar to wav2vec-u 1.0, cannot hold very large network -> e.g., even additional layer of CNN
 - But can be mitigate / even get improvements by adding auxiliary losses (e.g., K-means clustering as prediction target)
- Our best system: 21.3 PER

Still a long way to go...

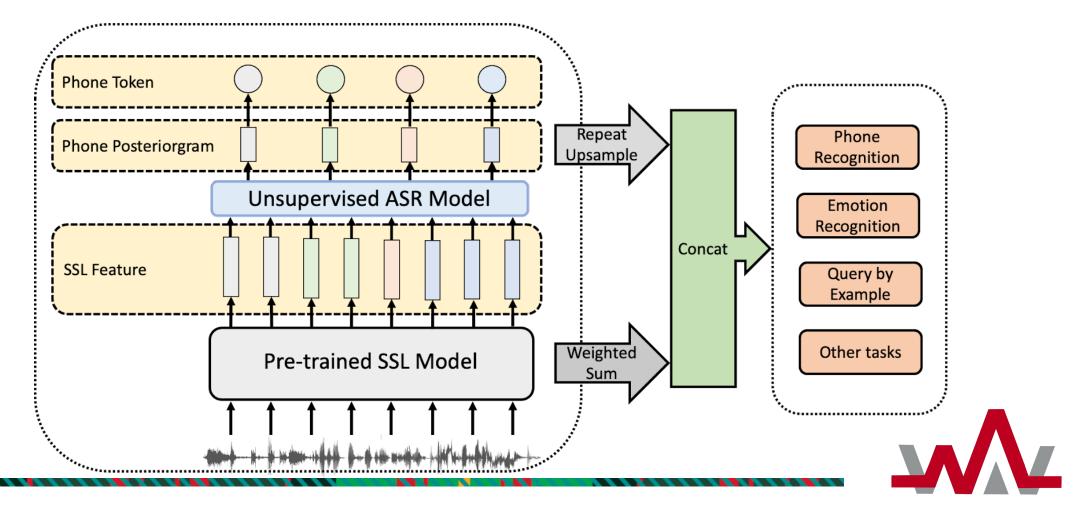
Still a long way to go...

- But we are working towards a more stable system which could be easily trained
- Come back later!

After unsupervised ASR

- Use as a self-supervised model
 - No supervised data needed
- Use as a segmenter
 - Unsupervised phone segmentation
- Use as a connector
 - Connecting Speech SSL with Text SSL

Unsupervised ASR as an SSL Model



Unsupervised ASR as an SSL Model (SUPERB Public Leaderboard)

U	nsupervis	ed AS	R Model
(Linear-Layer	}{	Hidden States
(↓ Conv-Layer	}{	Phone Posteriorgram

Upstrear	Upstream model		PR (↓)	PR-10h (↓)	ASR (\downarrow)
Wav2vec2 (Large)		317.39	5.51	7.09	3.79
	Hidden states	320.18	4.57	7.50	3.76
UASR	Phone posteriorgram (PPG)	320.18	4.53	6.26	3.83

Hubert (Large)	316.61	3.53	5.15	3.56	
----------------	--------	------	------	------	--

- •Better performances in PR
- •Similar performances in ASR
- •Still cannot fill the gap between Hubert

Phone Recognition (PR) - SUPERB public set (Librispeech-100)
Phoneme Recognition (PR-10h) - Librilight 10h split
Automatic speech recognition (ASR) - SUPERB public set (Librispeech-100)

Unsupervised ASR as an SSL Model (SUPERB Hidden-set Leaderboard)

Models	Phone Recognition (↓)	Speech Recognition (↓)	Emotion Recognition (↑)	Query by Example (↓)	SUPERB Score (↑)
Wav2vec2	22.55	23.58	60.99	22.48	902
Hubert	18.22	22.03	64.84	33.05	959
UASR (PPG)	17.22	23.75	65.11	21.99	962

Better performances in PR
Similar performances in ASR
Outperforms Hubert on several tasks

- SUPERB Score is a scaled score over 10 superb hidden-set tasks (from 0 1000). Calculation is based on <u>https://superbbenchmark.org/challenge-slt2022/metrics</u>
- All numbers are evaluated by SUPERB hidden sets (training & evaluation)

Unsupervised ASR as a segmenter

• It has a relative long background

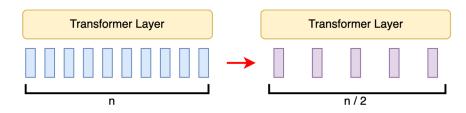
Sequence Compression for SSL

Why sequence compression?

Computational cost reduction

- Faster pre-training/inference speed
- Less operations & memory usage
- \rightarrow Impact of subsampling on different downstream tasks
- \rightarrow How much can the sequence be compressed?

Quadratic complexity

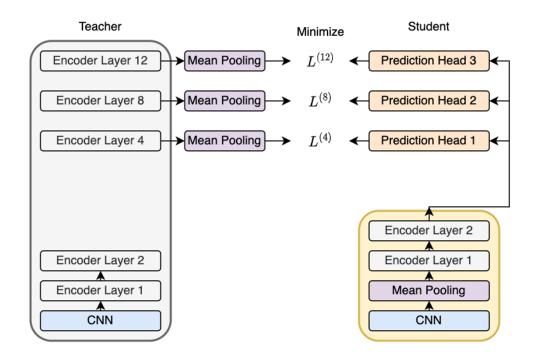


Framework for Sequence Compression

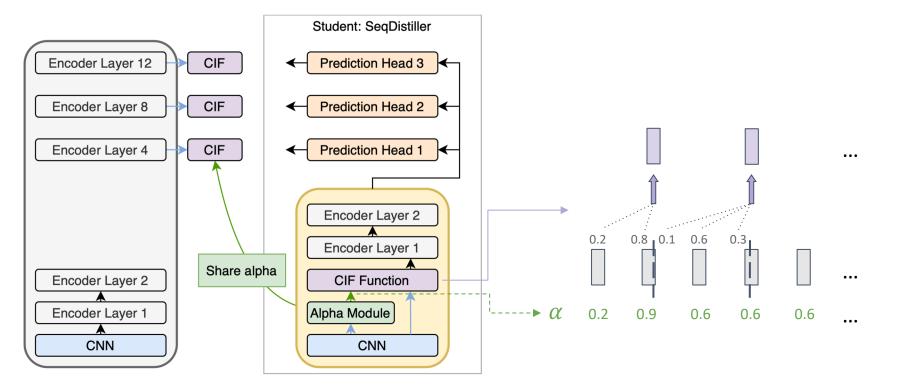
(a) With Upsample (target unchanged)

Teacher: HuBERT Student Teacher: HuBERT Student Minimize Minimize $L^{(12)}$ Prediction Head 3 Encoder Layer 12 Subsample $L^{(12)}$ Encoder Layer 12 Prediction Head 3 $L^{(8)}$ $L^{(8)}$ Encoder Layer 8 Encoder Layer 8 Subsample Prediction Head 2 Prediction Head 2 $L^{(4)}$ $L^{(4)}$ Encoder Layer 4 Prediction Head 1 Encoder Layer 4 Subsample Prediction Head 1 Upsample Share the same Encoder Layer 2 Encoder Layer 2 subsample method Encoder Layer 2 Encoder Layer 1 Encoder Layer 2 Encoder Layer 1 Encoder Layer 1 Encoder Layer 1 Subsample Subsample CNN CNN CNN CNN

Choices for subsampling layers-Fixed-length

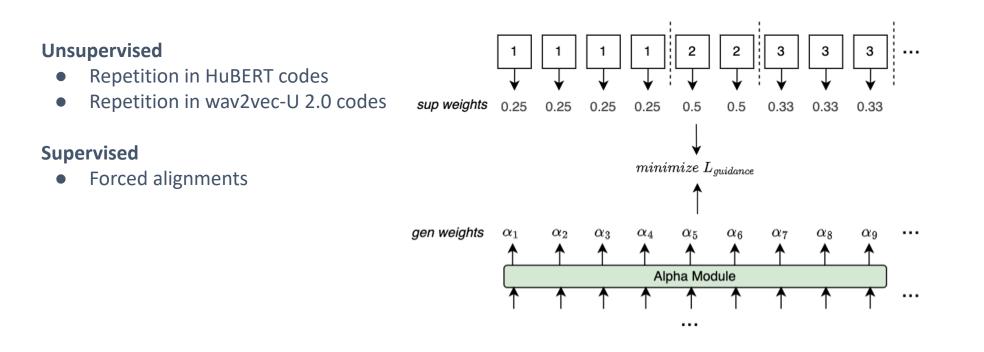


Choices for subsampling layers– Variable-length

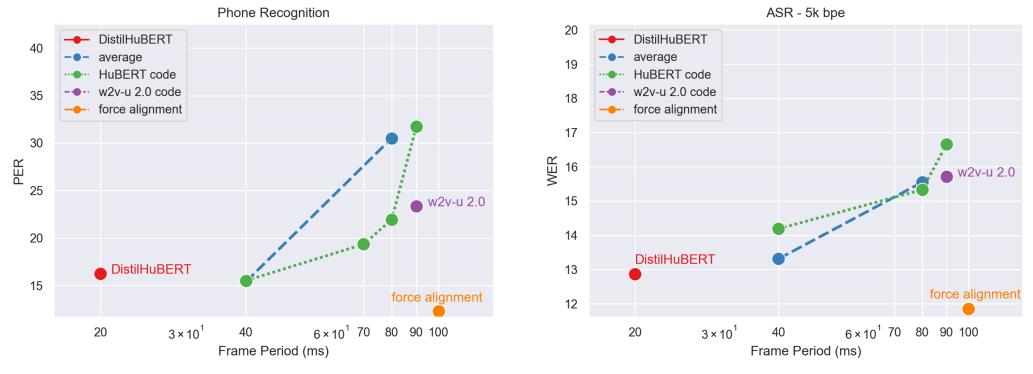


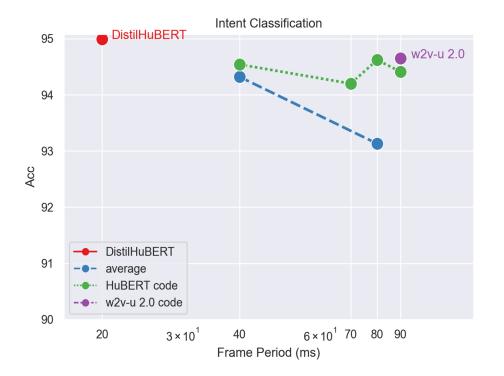
Dong, L., & Xu, B. (2020, May). Cif: Continuous integrate-and-fire for end-to-end speech recognition. In *ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)* (pp. 6079-6083). IEEE.

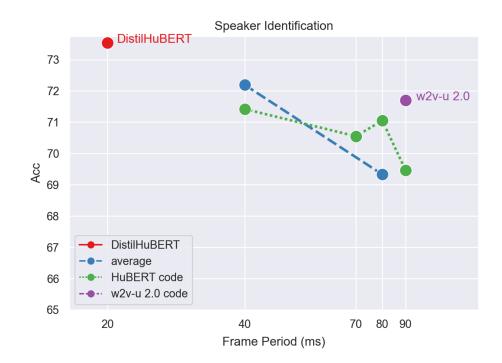
Segmentation guidance



Experiments on SUPERB benchmark

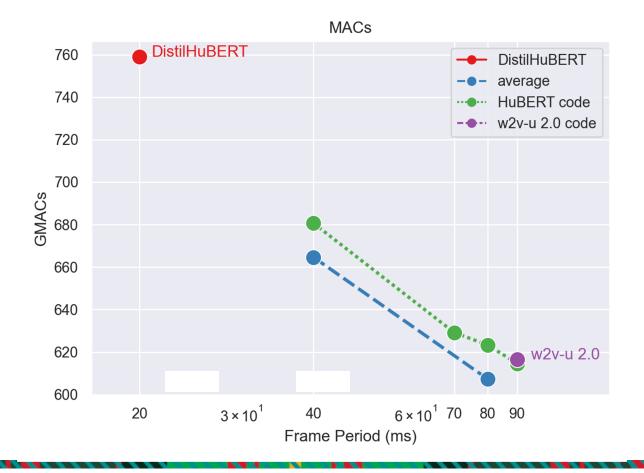




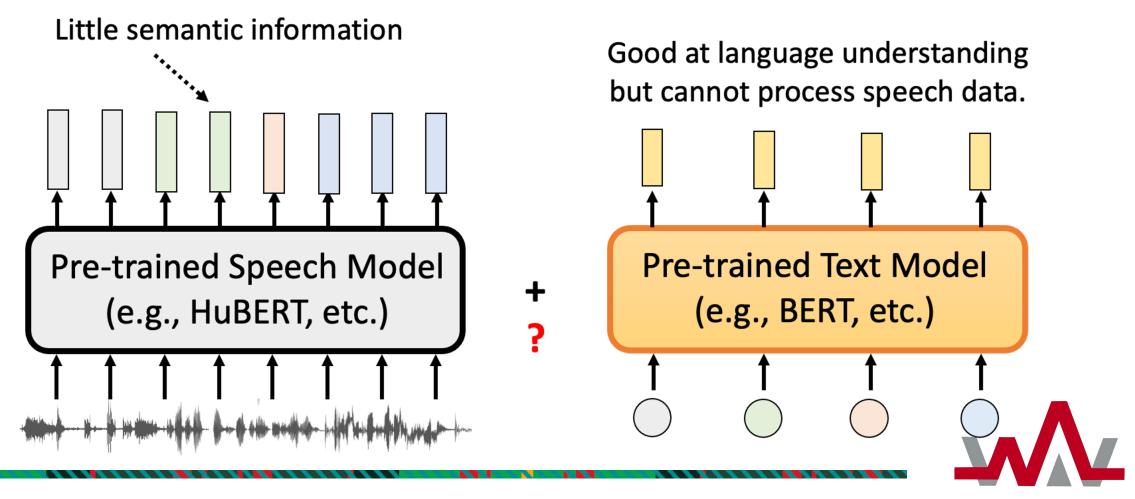


CMU-LTI WAV Lab

Computational burden?



Unsupervised ASR as a Connector

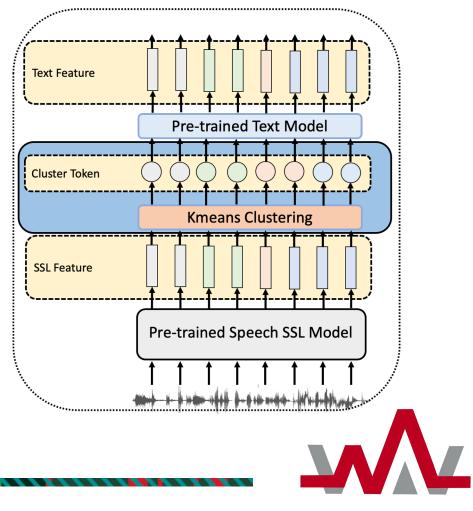


Unsupervised ASR as a Connector (Cont'd)

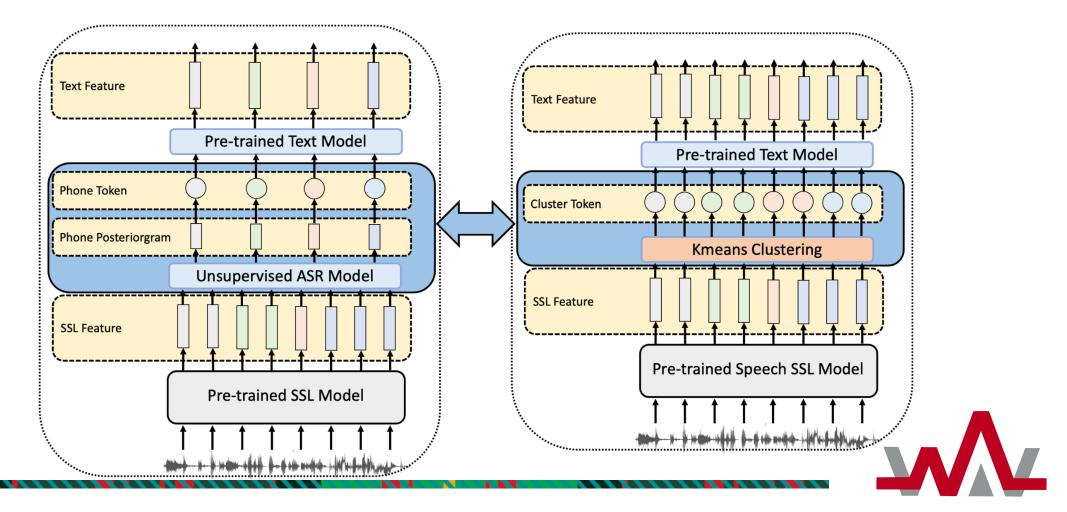
Existing method* to connect speech-SSL and text-SSL

- Method: Use speech-SSL feature clusters
- Domain is still mismatched
 - Acoustic v.s. Semantic

*: Guan-Ting Lin, Yung-Sung Chuang, Ho-Lam Chung, Shu-wen Yang, Hsuan-Jui Chen, Shuyan Dong, Shang-Wen Li, Abdelrahman Mohamed, Hung-yi Lee, Lin-shan Lee. "DUAL: Discrete Spoken Unit Adaptive Learning for Textless Spoken Question Answering" in Interspeech 2022



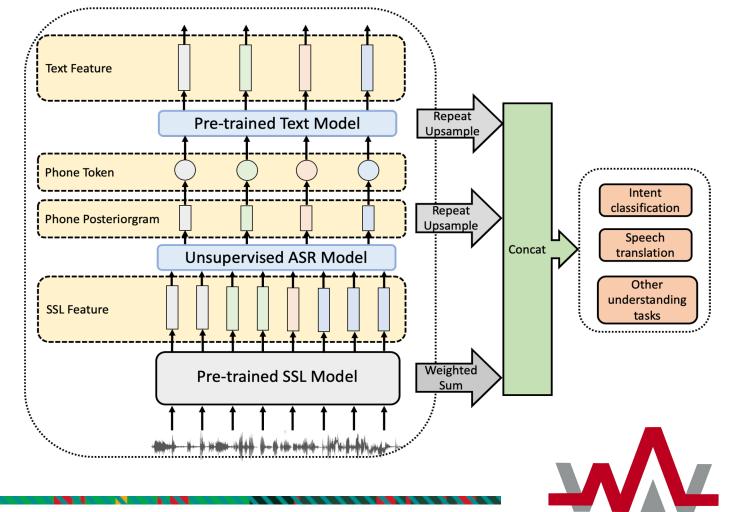
Close the domain mismatch



Unsupervised ASR as a Connector (Cont'd)

Mainly focus on understanding tasks

(e.g., intent classification, speech translation, etc.)



9/17/22

Experimental settings

- Speech SSL models: wav2vec 2.0
- Connector
 - Kmeans pretrained from fairseq
 - Unsupervised ASR
- Pretrained text model
 - Randomized T5
 - Phoneme T5
 - Byte-pair-encoding T5
- Fixed representation vs. Fine-tune text model

Unsupervised ASR as a Connector (Connector Options)

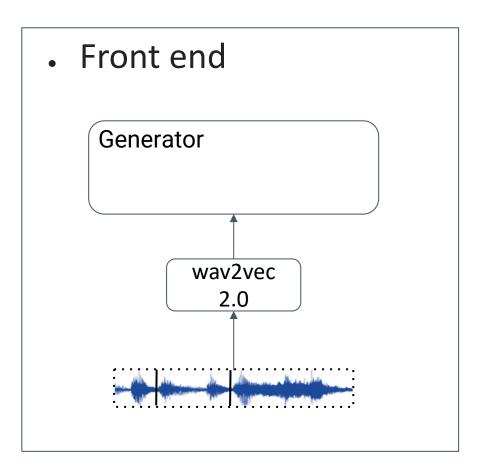
Tasks	Fixed - FSC (个)	Fine-tuning - SLURP (个)
Baseline (wav2vec2)	94.38	82.82
КМ	93.69	85.31
UASR	94.88	86.14

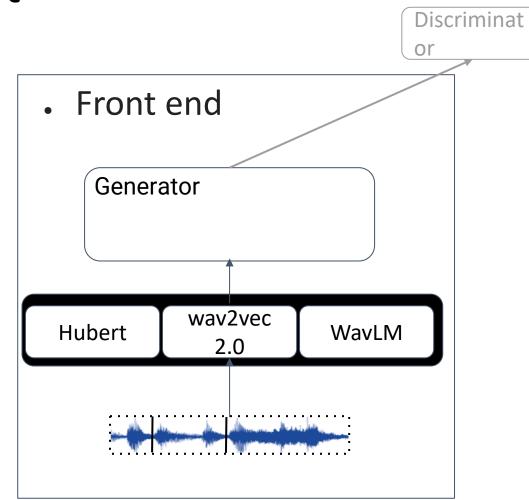
• KM methods cannot function well without fine-tuning

• UASR as a connector outperforms KM methods in both fixed and fine-tuning cases

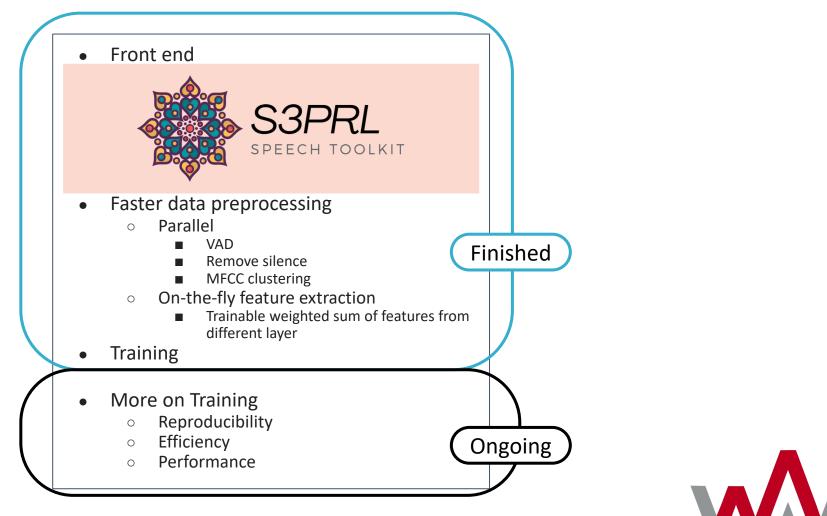
Ongoing work

• ESPnet – Unsupervised Recognition – Opensource (EURO) project









Thanks for your attention!

CMU-LTI WAV Lab