Compositional End-to-End SLU

Carnegie Mellon University Language Technologies Institute

- Presentor: Siddhant Arora
- siddhana@andrew.cmu.edu
- Parts of work from EMNLP 2022 Paper:
- Token-level Sequence Labeling for Spoken Language Understanding using Compositional End-to-End Models

Watanabe's Audio and Voice Lab

Content

- Spoken Language Understanding
- Sequence Labelling
- Current SLU Modelling
- Compositional Models
- Composition model for Sequence Labelling in SLU

Definition: Spoken Language Understanding

- Example: Spoken Language Understanding (SLU) [1] = ASR + NLU

[1] Lugosch et al., 2021. Speech Model Pre-training for End-to-End Spoken Language Understanding. Interspeech 2019

• As ASR systems get better, there is increasing interest of using ASR output for downstream NLP tasks.

Intent Classification : Spoken Utterance → Executable Intent

Slot Filling : User Command \rightarrow Associated Entities

Emotion Recognition : Understanding the emotion behind a utterance

Dialogue Act Classification : Modeling the topic of a conversation

Content

- Spoken Language Understanding
- Sequence Labelling
- Current SLU Modelling
- Compositional Models
- Composition model for Sequence Labelling in SLU

Definition: Sequence Labeling

 Sequence labeling (SL) systems tag each word in a sentence to provide insights into the sentence structure and meaning

Example: Named Entity Recognition : Tag = Entity Label

TIME EVENT NAME PERSON DATE put meeting with pawel for tomorrow ten am

Sequence Labeling for NLU

- Token Classification model
 - Current tag is conditionally independent to previous tag
 - BIO Tagging -> Named Entity can span multiple words

[2] Delvin et al., 2019. BERT: pre-training of deep bidirectional transformers for language understanding. EMNLP 2019

Sequence Labeling for NLU

- CRF model ullet
 - Global Normalised Loss $P(Y|S) = \frac{1}{3}$ lacksquare
 - Global Score = Sum over all words, Emission Score + Transition Score

[3] Lafferty et al., 2001. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. ICML 2001

$$\frac{e^{F(Y,S)}}{\sum_{Y'\in\mathcal{L}^N}e^{F(Y',S)}}$$

Sequence Labeling for SLU

Additional complexity of recognizing the mention of the labels

Content

- Spoken Language Understanding
- Sequence Labelling
- Current SLU Modelling
- Compositional Models
- Composition model for Sequence Labelling in SLU

Cascaded SLU Architectures

Cascaded SLU

E2E SLU Architectures

1. Advantages

- 1. Avoid drawbacks of the cascaded system
- 2. Simplicity
- Limitations 2.
 - 1. Cannot utilize the well studied sequence labeling framework
 - 2. Understanding errors made by system difficult

put EVENT_NAME FILL meeting SEP with PERSON FILL pawel SEP for DATE FILL tomorrow SEP TIME FILL ten am SEP

E2E SLU

Content

- Spoken Language Understanding
- Sequence Labelling
- Current SLU Modelling
- Compositional Models
- Composition model for Sequence Labelling in SLU

What is Compositionality?

11

together simpler sub-systems.

Spanish Audio

Single Complex Task 😕

Compositionality is the principle behind building complex systems by composing

What is Compositionality?

together simpler sub-systems.

Compositionality is the principle behind building complex systems by composing

Compositionality in System Building

 Compositionality takes a practical approach to system building, going from creating stand-alone systems to their large-scale development.

Compositionality in System Building

 Compositionality takes a practical approach to system building, going from creating stand-alone systems to their large-scale development.

Compositionality in System Building

• Compositionality takes a practical approach to system building, going from creating stand-alone systems to their large-scale development.

ade	
vel nd	
ource ms	

- General end-to-end framework to exploit natural decomposition in sequence tasks.
 - A sequence task, $A \rightarrow C$ is decomposable, if there is an intermediate sequence B for which $A \rightarrow B$ sequence transduction followed by $B \rightarrow C$ prediction achieves the original task.
 - For instance, Speech Translation or Spoken Language Understanding using ASR intermediates

• Compositional E2E Models learns $P(C \mid A)$ through decomposition;

•
$$P(C \mid A) = \sum_{B} (P(C \mid A, B)P(B \mid A))$$

- $P(C \mid A) \approx \max_{B} (P(C \mid A, B)P(B \mid A))$, approximated with Viterbi.
- This allows the use of traditional formulations for building $P(B \mid A)$ and $P(C \mid B)$.

, using Sum Rule.

Compositional E2E Models learns $P(C \mid A)$ through decomposition;

• This allows the use of raditional formulations for building P(B | A) and P(C | B).

Speech Recognition Formulation

ASR

- The Compositional E2E Model with Searchable Intermediates has three main focus -• Simplify learning process by decomposing tasks, while maintaining end-to-end
 - differentiability.
 - Utilize existing and well-studied Speech and NLP formulations in building complex sequence tasks.
 - Add Component-level Search Capabilities with an Intermediate Decoder.

Multi-Decoder Model with Searchable Intermediates

Multi-Decoder Model with Searchable Intermediates

Multi-Decoder Model with Searchable Intermediates

Content

- Spoken Language Understanding
- Sequence Labelling
- Current SLU Modelling
- Compositional Models
- Composition model for Sequence Labelling in SLU

Desired Compositional E2E SLU Architecture SLU ASR NLU O EVENT_NAME_B O PERSON_B O DATE_B TIME_B TIME I Sub-Net Sub-Net **INTERMEDIATE OUTPUT:** put meeting with pawel for

<u>Compositional E2E SLU</u>

Inspired by the principles of task compositionalty in SL for SLU, <u>we seek to bring both schools of thought together</u> Our Contributions-

- 1. Build compositional SLU using searchable intermediate framework [2] that
 - Convert spoken utterance to sequence of token representations -> ASR Subnetwork
 - Train token classification network -> NLU Subnetwork
- 2. Conditioning token-wise classification on speech allows <u>recovery from errors</u>

[4] Dalmia et al., 2021. Searchable hidden intermediates for end-to-end models of decomposable sequence tasks. NAACL 2021

Compositional E2E SLU Model with Searchable Intermediates The NLU Sub-Net: • Uses the sequence of decoder hidden representations \mathbf{h}^{D_B} . This makes the length of the NLU sequence known. • Allowing, token level sequence labeling formulation! • Can also use globally normalized loss like CRF. ASR Sub-Net NLU Sub-Net DECODERASR ENCODER_{ASR} y_L^{SLU} SLU . . . y_1^{ASR} $y_L^{ t ASR}$ eos . . . Linear Layer CRF/Token Classification N >Linear Layer Self-Attention Linear Layer N imesN imesCross-Attention Sub-Sampling Speech-Attention Self-Attention Self-Attention x_T x_1 . . . h_L^{SLU} $y_1^{ t ASR}$ $y_L^{ t ASR}$ $h_1^{ t SLU}$ SOS

Experimental Setup

- 1. Task: Named Entity Recognition
- 2. Dataset
 - 1. SLURP Dataset
 - 2. SLUE Dataset
- 3. Models
 - 1. Baseline
 - 1. Cascaded SLU
 - 2. E2E SLU
 - 2. Compositional E2E SLU
 - 1. Proposed NLU formulation
 - 1. CRF
 - 2. Token Classification
 - 1. w/o Speech Attention (Ablation)
 - 3. Pretraining
 - 1. ASR Gigapeech dataset
 - 2. LM Canine

Cascade System 📕 Baseline Enc-Dec 📕 Compositional E2E SLU

Outperforms both Encoder-Decoder and Cascaded Models -

- +4 F1 and +1 F1 on SLURP
- +12 F1 and +6 F1 on SLUE-VoxPopuli

SLUE VoxPopuli

Each sub-task model can be pre-trained due to the decomposed functionality

Direct E2E w/ Pre-training

- Compositional E2E SLU
- Compositional E2E SLU w/ Pre-training

Score Ĩ

Using Pre-trained Subtask Models Guiding Intermediate Representations

Resource Pooling

We can guide the intermediate representations in our Compositional E2E Model using external sub-net models during inference without any fine-tuning steps.

Performance on SLUE Voxpopuli improves by +10 F1, without re-training!

- Direct E2E
- Direct E2E w/ External ASR Transcripts
- Compositional E2E SLU
- Compositional E2E SLU w/ External ASR Transcripts

SLUE VoxPopuli

Performance Monitoring

Error Categorisation

	Hypothesis	Reference	
ASR Correct Entity Correct	event reminder mona tuesday	event reminder mona tuesday	
ASR Correct Entity Incorrect	IS there anything happening on jazz scene around edinburgh	IS there anything happening on jazz scene around edinburgh	
ASR Incorrect Entity Correct	EVENT NAME PERSON DATE TIME create meeting with paul for tomorrow at ten am	EVENT NAME PERSON DATE TIME put meeting with pawel for tomorrow ten am	
ASR Incorrect Entity Incorrect	set a birthday event for ninety	Set a birthday event for martin	

One-to-one alignment between ASR and Sequence Labelling help Error Categorisation

• Not possible in E2E Systems

Error Categorisation

tity Incorrect			
1	# Examples		
4	465		
A	474		
4	1343		
A	1336		

Performance Difference w/ Speech Attention caused mainly by the errors where ASR inaccurate, but the NLU module is nevertheless able to recover the correct entity

- Confirms Intuition
- Transparency useful for practitioners to debug model

SLURP

SLUE-VoxPopuli

Related Studies

[5] Saxon et al., 2021. End-to-end spoken language understanding for generalized voice assistants. Interspeech 2021.

Discrete outputs from the ASR module that are made differentiable using various approaches like Gumbel-softmax

Related Studies

Uses the ASR decoder hidden representations in the N ASR discrete output.

Requires the ASR and NLU submodule to have a shared vocabulary space, limiting usage of pretrained models.

[6] Rao et al. 2020. Speech to semantics: Improve ASR and NLU jointly via all-neural interfaces. Interspeech 2020.

Uses the ASR decoder hidden representations in the NLU module by concatenating with token embeddings of the

Evaluating End-to-End Systems for Decomposable Tasks

Research Objectives

By exploiting compositionality, can we build benchmark test sets for a dataset that evaluates different portions of end-to-end model?

Case Study: SLU

- task specific utility functions.
- - 2. One to test speech processing skills.

1. Framework to construct robust test sets using coordinate ascent over sub-

2. Given a dataset for a decomposable task, optimally create test sets for each sub-task to individually assess components of the end-to-end model. 1. One assessing natural language understanding abilities, and

Conclusion

Compositional model combines the powers of 2 school of thoughts

- No Error Propagation
- Better Compatibility with Pretrained Models
- Better Transparency

Higher Performance (1)

Future Directions

I hope this thesis encourages researchers to -

- Build compositionality inspired neural architectures -
 - Can be extended to other decomposable tasks like Visual QA
 - Can also be used in Dual Learning Framework like Cyclic ASR-TTS Systems
 - Achieve End to End Differentiability using Compositional Model

ke Visual QA e Cyclic ASR-TTS Systems hpositional Model

Future Directions

I hope this thesis encourages researchers to -

- Build flexible tokenization for easy composition of systems -

 - prediction!.
- Extend compositional E2E systems to streaming applications

• If one token distribution can be converted into another token distribution; for example BPE 100 to 2000, • Avoid system interactions in surface text, allowing utilization of additional information like entropy of the

Questions Thanks for Watching

Dataset & Code : <u>https://github.com/espnet/espnet</u> (Issues and contribution welcome)

